scholarly journals Identification of Novel Determinants of Neutralization Epitope Shielding for Hepatitis C Virus in Vitro

Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 5
Author(s):  
Garazi Alzua ◽  
Anne Pihl ◽  
Anna Offersgaard ◽  
Rodrigo Velázquez-Moctezuma ◽  
Elias Augestad ◽  
...  

Epitope shielding is suggested as an important mechanism mediating the escape of hepatitis C virus (HCV) from host-neutralizing antibodies (nAb). [...]

2003 ◽  
Vol 77 (3) ◽  
pp. 1856-1867 ◽  
Author(s):  
RosaMaria Roccasecca ◽  
Helenia Ansuini ◽  
Alessandra Vitelli ◽  
Annalisa Meola ◽  
Elisa Scarselli ◽  
...  

ABSTRACT The envelope glycoprotein E2 of hepatitis C virus (HCV) is the target of neutralizing antibodies and is presently being evaluated as an HCV vaccine candidate. HCV binds to human cells through the interaction of E2 with the tetraspanin CD81, a putative viral receptor component. We have analyzed four different E2 proteins from 1a and 1b viral isolates for their ability to bind to recombinant CD81 in vitro and to the native receptor displayed on the surface of Molt-4 cells. A substantial difference in binding efficiency between these E2 variants was observed, with proteins derived from 1b subtypes showing significantly lower binding than the 1a protein. To elucidate the mechanism of E2-CD81 interaction and to identify critical regions responsible for the different binding efficiencies of the E2 variants, several mutants were generated in E2 protein regions predicted by computer modeling to be exposed on the protein surface. Functional analysis of these E2 derivatives revealed that at least two distinct domains are responsible for interaction with CD81. A first segment centered around amino acid residues 613 to 618 is essential for recognition, while a second element including the two hypervariable regions (HVRs) modulates E2 receptor binding. Binding inhibition experiments with anti-HVR monoclonal antibodies confirmed this mapping and supported the hypothesis that a complex interplay between the two HVRs of E2 is responsible for modulating receptor binding, possibly through intramolecular interactions. Finally, E2 proteins from different isolates displayed a profile of binding to human hepatic cells different from that observed on Molt-4 cells or isolated recombinant CD81, indicating that additional factors are involved in viral recognition by target liver cells.


2019 ◽  
Vol 220 (7) ◽  
pp. 1209-1218 ◽  
Author(s):  
Anne Olbrich ◽  
Hedda Wardemann ◽  
Stephan Böhm ◽  
Karen Rother ◽  
Che C Colpitts ◽  
...  

AbstractNeutralizing antibodies can prevent hepatitis C virus (HCV) infection, one of the leading causes of cirrhosis and liver cancer. Here, we characterized the immunoglobulin repertoire of memory B-cell antibodies against a linear epitope in the central front layer of the HCV envelope (E2; amino acids 483–499) in patients who were infected in a single-source outbreak. A reverse transcription polymerase chain reaction–based immunoglobulin gene cloning and recombinant expression approach was used to express monoclonal antibodies from HCV E2 peptide–binding immunoglobulin G–positive memory B cells. We identified highly mutated antibodies with a neutralizing effect in vitro against different genotype isolates sharing similar gene features. Our data confirm the importance of VH1–69 use for neutralizing activity. The data offer a promising basis for vaccine research and the use of anti-E2 antibodies as a means of passive immunization.


Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 291
Author(s):  
Rodrigo Velázquez-Moctezuma ◽  
Elias H. Augestad ◽  
Matteo Castelli ◽  
Christina Holmboe Olesen ◽  
Nicola Clementi ◽  
...  

Hepatitis C virus (HCV) is a major causative agent of acute and chronic hepatitis. It is estimated that 400,000 people die every year from chronic HCV infection, mostly from severe liver-related diseases such as cirrhosis and liver cancer. Although HCV was discovered more than 30 years ago, an efficient prophylactic vaccine is still missing. The HCV glycoprotein complex, E1/E2, is the principal target of neutralizing antibodies (NAbs) and, thus, is an attractive antigen for B-cell vaccine design. However, the high genetic variability of the virus necessitates the identification of conserved epitopes. Moreover, the high intrinsic mutational capacity of HCV allows the virus to continually escape broadly NAbs (bNAbs), which is likely to cause issues with vaccine-resistant variants. Several studies have assessed the barrier-to-resistance of vaccine-relevant bNAbs in vivo and in vitro. Interestingly, recent studies have suggested that escape substitutions can confer antibody resistance not only by direct modification of the epitope but indirectly through allosteric effects, which can be grouped based on the breadth of these effects on antibody susceptibility. In this review, we summarize the current understanding of HCV-specific NAbs, with a special focus on vaccine-relevant bNAbs and their targets. We highlight antibody escape studies pointing out the different methodologies and the escape mutations identified thus far. Finally, we analyze the antibody escape mechanisms of envelope protein escape substitutions and polymorphisms according to the most recent evidence in the HCV field. The accumulated knowledge in identifying bNAb epitopes as well as assessing barriers to resistance and elucidating relevant escape mechanisms may prove critical in the successful development of an HCV B-cell vaccine.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255336
Author(s):  
Jannick Prentoe ◽  
Christoph M. Janitzek ◽  
Rodrigo Velázquez-Moctezuma ◽  
Louise Goksøyr ◽  
Rebecca W. Olsen ◽  
...  

Yearly, about 1.5 million people become chronically infected with hepatitis C virus (HCV) and for the 71 million with chronic HCV infection about 400,000 die from related morbidities, including liver cirrhosis and cancer. Effective treatments exist, but challenges including cost-of-treatment and wide-spread undiagnosed infection, necessitates the development of vaccines. Vaccines should induce neutralizing antibodies (NAbs) against the HCV envelope (E) transmembrane glycoprotein 2, E2, which partly depends on its interaction partner, E1, for folding. Here, we generated three soluble HCV envelope protein antigens with the transmembrane regions deleted (i.e., fused peptide backbones), termed sE1E2 (E1 followed by E2), sE2E1 (E2 followed by E1), and sE21E (E2 followed by inverted E1). The E1 inversion for sE21E positions C-terminal residues of E1 near C-terminal residues of E2, which is in analogy to how they likely interact in native E1/E2 complexes. Probing conformational E2 epitope binding using HCV patient-derived human monoclonal antibodies, we show that sE21E was superior to sE2E1, which was consistently superior to sE1E2. This correlated with improved induction of NAbs by sE21E compared with sE2E1 and especially compared with sE1E2 in female BALB/c mouse immunizations. The deletion of the 27 N-terminal amino acids of E2, termed hypervariable region 1 (HVR1), conferred slight increases in antigenicity for sE2E1 and sE21E, but severely impaired induction of antibodies able to neutralize in vitro viruses retaining HVR1. Finally, comparing sE21E with sE2 in mouse immunizations, we show similar induction of heterologous NAbs. In summary, we find that C-terminal E2 fusion of E1 or 1E is superior to N-terminal fusion, both in terms of antigenicity and the induction of heterologous NAbs. This has relevance when designing HCV E1E2 vaccine antigens.


2015 ◽  
Vol 89 (17) ◽  
pp. 9128-9132 ◽  
Author(s):  
Jens Bukh ◽  
Ronald E. Engle ◽  
Kristina Faulk ◽  
Richard Y. Wang ◽  
Patrizia Farci ◽  
...  

The importance of neutralizing antibodies (NAbs) in protection against hepatitis C virus (HCV) remains controversial. We infused a chimpanzee with H06 immunoglobulin from a genotype 1a HCV-infected patient and challenged with genotype strains efficiently neutralized by H06in vitro. Genotype 1a NAbs afforded no protection against genotype 4a or 5a. Protection against homologous 1a lasted 18 weeks, but infection emerged when NAb titers waned. However, 6a infection was prevented. The differentialin vivoneutralization patterns have implications for HCV vaccine development.


1999 ◽  
Vol 73 (9) ◽  
pp. 7497-7504 ◽  
Author(s):  
A. Fournillier ◽  
E. Depla ◽  
P. Karayiannis ◽  
O. Vidalin ◽  
G. Maertens ◽  
...  

ABSTRACT Interactive glycoproteins present on the surface of viral particles represent the main target of neutralizing antibodies. The ability of DNA vaccination to induce antibodies directed at such structures was investigated by using eight different expression plasmids engineered either to favor or to prevent interaction between the hepatitis C virus (HCV) envelope glycoproteins E1 and E2. Independently of the injection route (intramuscular or intraepidermal), plasmids expressing antigens capable of forming heterodimers presumed to be the prebudding form of the HCV envelope protein complex failed to induce any significant, stable antibodies following injection in mice. In sharp contrast, high titers of antibodies directed at both conformational and linear determinants were induced by using plasmids expressing severely truncated antigens that have lost the ability to form native complexes. In addition, only a truncated form of E2 induced antibodies reacting against the hypervariable region 1 of E2 (specifically with the C-terminal part of it) known to contain a neutralization site. When injected intraepidermally into small primates, the truncated E2-encoding plasmid induced antibodies able to neutralize in vitro the binding of a purified E2 protein onto susceptible cells. Because such antibodies have been associated with viral clearance in both humans and chimpanzees, these findings may have important implications for the development of protective immunity against HCV.


2006 ◽  
Vol 44 (08) ◽  
Author(s):  
P Hilgard ◽  
R Bröring ◽  
M Trippler ◽  
S Viazov ◽  
G Gerken ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document