The effects of the conserved extreme 3' end sequence of hepatitis C virus (HCV) RNA on the in vitro stabilization and translation of the HCV RNA genome

2000 ◽  
Vol 33 (4) ◽  
pp. 632-639 ◽  
Author(s):  
Jane W. S. Fang ◽  
Richard W. Moyer
2012 ◽  
Vol 57 (1) ◽  
pp. 436-444 ◽  
Author(s):  
Naoki Ogura ◽  
Yukiyo Toyonaga ◽  
Izuru Ando ◽  
Kunihiro Hirahara ◽  
Tsutomu Shibata ◽  
...  

ABSTRACTJTK-853, a palm site-binding NS5B nonnucleoside polymerase inhibitor, shows antiviral activityin vitroand in hepatitis C virus (HCV)-infected patients. Here, we report the results of genotypic and phenotypic analyses of resistant variants in 24 HCV genotype 1-infected patients who received JTK-853 (800, 1,200, or 1,600 mg twice daily or 1,200 mg three times daily) in a 3-day monotherapy. Viral resistance in NS5B was investigated using HCV RNA isolated from serum specimens from the patients. At the end of treatment (EOT) with JTK-853, the amino acid substitutions M414T (methionine [M] in position 414 at baseline was replaced with threonine [T] at EOT), C445R (cysteine [C] in position 445 at baseline was replaced with arginine [R] at EOT), Y448C/H (tyrosine [Y] in position 448 at baseline was replaced with cysteine [C] or histidine [H] at EOT), and L466F (leucine [L] in position 466 at baseline was replaced with phenylalanine [F] at EOT), which are known to be typical resistant variants of nonnucleoside polymerase inhibitors, were observed in a clonal sequencing analysis. These substitutions were also selected by a treatment with JTK-853in vitro, and the 50% effective concentration of JTK-853 in the M414T-, C445F-, Y448H-, and L466V-harboring replicons attenuated the susceptibility by 44-, 5-, 6-, and 21-fold, respectively, compared with that in the wild-type replicon (Con1). These findings suggest that amino acid substitutions of M414T, C445R, Y448C/H, and L466F are thought to be viral resistance mutations in HCV-infected patients receiving JTK-853 in a 3-day monotherapy.


2018 ◽  
Vol 19 (9) ◽  
pp. 2771 ◽  
Author(s):  
Yoo Cho ◽  
Hwan Lee ◽  
Hyojeung Kang ◽  
Hyosun Cho

HCV genotype 2a strain JFH-1 replicates and produces viral particles efficiently in human hepatocellular carcinoma (huh) 7.5 cells, which provide a stable in vitro cell infection system for the hepatitis C virus (HCVcc system). Natural killer (NK) cells are large lymphoid cells that recognize and kill virus-infected cells. In this study, we investigated the interaction between NK cells and the HCVcc system. IL-10 is a typical immune regulatory cytokine that is produced mostly by NK cells and macrophages. IL-21 is one of the main cytokines that stimulate the activation of NK cells. First, we used anti-IL-10 to neutralize IL-10 in a coculture of NK cells and HCVcc. Anti-IL-10 treatment increased the maturation of NK cells by enhancing the frequency of the CD56+dim population in NK-92 cells. However, with anti-IL-10 treatment of NK cells in coculture with J6/JFH-1-huh 7.5 cells, there was a significant decrease in the expression of STAT1 and STAT5 proteins in NK-92 cells and an increase in the HCV Core and NS3 proteins. In addition, rIL-21 treatment increased the frequency of the CD56+dim population in NK-92 cells, Also, there was a dramatic increase in the expression of STAT1 and STAT5 proteins in rIL-21 pre-stimulated NK cells and a decrease in the expression of HCV Core protein in coculture with J6/JFH-1-huh 7.5 cells. In summary, we found that the functional activation of NK cells can be modulated by anti-IL-10 or rIL-21, which controls the expression of HCV proteins as well as HCV RNA replication.


2008 ◽  
Vol 52 (6) ◽  
pp. 2097-2110 ◽  
Author(s):  
Pantxika Bellecave ◽  
Christian Cazenave ◽  
Julie Rumi ◽  
Cathy Staedel ◽  
Ophélie Cosnefroy ◽  
...  

ABSTRACT We describe here the further characterization of two DNA aptamers that specifically bind to hepatitis C virus (HCV) RNA polymerase (NS5B) and inhibit its polymerase activity in vitro. Although they were obtained from the same selection procedure and contain an 11-nucleotide consensus sequence, our results indicate that aptamers 27v and 127v use different mechanisms to inhibit HCV polymerase. While aptamer 27v was able to compete with the RNA template for binding to the enzyme and blocked both the initiation and the elongation of RNA synthesis, aptamer 127v competed poorly and exclusively inhibited initiation and postinitiation events. These results illustrate the power of the selective evolution of ligands by exponential enrichment in vitro selection procedure approach to select specific short DNA aptamers able to inhibit HCV NS5B by different mechanisms. We also determined that, in addition to an in vitro inhibitory effect on RNA synthesis, aptamer 27v was able to interfere with the multiplication of HCV JFH1 in Huh7 cells. The efficient cellular entry of these short DNAs and the inhibitory effect observed on human cells infected with HCV indicate that aptamers are useful tools for the study of HCV RNA synthesis, and their use should become a very attractive and alternative approach to therapy for HCV infection.


2009 ◽  
Vol 90 (12) ◽  
pp. 2929-2939 ◽  
Author(s):  
Pong Kian Chua ◽  
Matthew F. McCown ◽  
Sonal Rajyaguru ◽  
Simran Kular ◽  
Ram Varma ◽  
...  

ISG15 has recently been reported to possess antiviral properties against viruses, both in vivo and in vitro. Knock-down of ISG15 gene expression by small interfering RNA followed by alpha interferon (IFN-α) treatment in Huh-7 cells resulted in an increased phenotypic sensitivity to IFN-α, as determined by measuring hepatitis C virus (HCV) RNA replication inhibition in stably transfected HCV replicon cells and in cells infected with genotype 1a HCVcc (infectious HCV). This IFN-α-specific effect, which was not observed with IFN-γ, correlated with an increase in expression of the IFN-α-inducible genes IFI6, IFITM3, OAS1 and MX1, whereas the expression of the non-IFN-α-inducible genes PTBP-1 and JAK1 remained unchanged. It has previously been reported that, unlike ISG15 knock-down, increased sensitivity to IFN-α after knock-down of USP18 occurs through the prolonged phosphorylation of STAT-1. Combination knock-down of ISG15 and USP18 resulted in a moderate increase in IFN-α-inducible gene expression compared with single ISG15 or USP18 knock-down. Furthermore, the phenotype of increased gene expression after ISG15 knock-down and IFN-α treatment was also observed in non-hepatic cell lines A549 and HeLa. Taken together, these results reveal a novel function for ISG15 in the regulation of the IFN-α pathway and its antiviral effect.


2014 ◽  
Vol 58 (12) ◽  
pp. 7215-7224 ◽  
Author(s):  
Auda A. Eltahla ◽  
Enoch Tay ◽  
Mark W. Douglas ◽  
Peter A. White

ABSTRACTDirect-acting antivirals (DAAs) targeting proteins encoded by the hepatitis C virus (HCV) genome have great potential for the treatment of HCV infections. However, the efficacy of DAAs designed to target genotype 1 (G1) HCV against non-G1 viruses has not been characterized fully. In this study, we investigated the inhibitory activities of nonnucleoside inhibitors (NNIs) against the HCV RNA-dependent RNA polymerase (RdRp). We examined the ability of six NNIs to inhibit G1b, G2a, and G3a subgenomic replicons in cell culture, as well asin vitrotranscription by G1b and G3a recombinant RdRps. Of the six G1 NNIs, only the palm II binder nesbuvir demonstrated activity against G1, G2, and G3 HCV, in both replicon and recombinant enzyme models. The thumb I binder JTK-109 also inhibited G1b and G3a replicons and recombinant enzymes but was 41-fold less active against the G2a replicon. The four other NNIs, which included a palm I binder (setrobuvir), two thumb II binders (lomibuvir and filibuvir), and a palm β-hairpin binder (tegobuvir), all showed at least 40-fold decreases in potency against G2a and G3a replicons and the G3a enzyme. This antiviral resistance was largely conferred by naturally occurring amino acid residues in the G2a and G3a RdRps that are associated with G1 resistance. Lomibuvir and filibuvir (thumb II binders) inhibited primer-dependent but notde novoactivity of the G1b polymerase. Surprisingly, these compounds instead specifically enhanced thede novoactivity at concentrations of ≥100 nM. These findings highlight a potential differential mode of RdRp inhibition for HCV NNIs, depending on their prospective binding pockets, and also demonstrate a surprising enhancement ofde novoactivity for thumb RdRp binders. These results also provide a better understanding of the antiviral coverage for these polymerase inhibitors, which will likely be used in future combinational interferon-free therapies.


Author(s):  
Jens Mueller ◽  
Matthias Gessner ◽  
Anja Remberg ◽  
Jochen Hoch ◽  
Gerold Zerlauth ◽  
...  

AbstractNucleic acid amplification testing for hepatitis C virus (HCV) RNA has become an essential tool for the prevention and clinical management of hepatitis C. We describe the development, validation and evaluation of a homogenous reverse transcriptase-initiated HCV-PCR assay with competitive internal control that is applicable to both the quantitative detection of HCV genomes in single patient samples and the screening of blood donations by mini-pool testing. For the implementation of a positive run control, a HCV RNA-positive plasma sample was calibrated against an international HCV RNA standard preparation. For quantification purposes, an in vitro-transcribed RNA calibrator sequence was used. The detection limit of the assay (95% positive cut-off) was determined by probit analysis and was calculated as 114IU/mL. Comparable sensitivity to different HCV template sequences was verified for HCV genotypes 1–5. Quantitative test results correlated well with viral loads that had been previously determined by the Bayer VERSANT HCV RNA 3.0 bDNA assay (n=53, R=0.943, p<0.001). During more than 5years of blood donation testing, the specificity of the assay was found to be 99.51%. All assay components showed constant performance during this time period. In conclusion, we introduce a well-proven method that allows fast and reliable quantification of HCV genomes.


2002 ◽  
Vol 76 (19) ◽  
pp. 9563-9574 ◽  
Author(s):  
Robert M. Smith ◽  
Cherie M. Walton ◽  
Catherine H. Wu ◽  
George Y. Wu

ABSTRACT The 3′-terminal sequences of hepatitis C virus (HCV) positive- and negative-strand RNAs contribute cis-acting functions essential for viral replication. The secondary structure and protein-binding properties of these highly conserved regions are of interest not only for the further elucidation of HCV molecular biology, but also for the design of antisense therapeutic constructs. The RNA structure of the positive-strand 3′ untranslated region has been shown previously to influence binding by various host and viral proteins and is thus thought to promote HCV RNA synthesis and genome stability. Recent studies have attributed analogous functions to the negative-strand 3′ terminus. We evaluated the HCV negative-strand secondary structure by enzymatic probing with single-strand-specific RNases and thermodynamic modeling of RNA folding. The accessibility of both 3′-terminal sequences to hybridization by antisense constructs was evaluated by RNase H cleavage mapping in the presence of combinatorial oligodeoxynucleotide libraries. The mapping results facilitated identification of antisense oligodeoxynucleotides and a 10-23 deoxyribozyme active against the positive-strand 3′-X region RNA in vitro.


2014 ◽  
Vol 59 (2) ◽  
pp. 988-997 ◽  
Author(s):  
Tami Pilot-Matias ◽  
Rakesh Tripathi ◽  
Daniel Cohen ◽  
Isabelle Gaultier ◽  
Tatyana Dekhtyar ◽  
...  

ABSTRACTThe development of direct-acting antiviral agents is a promising therapeutic advance in the treatment of hepatitis C virus (HCV) infection. However, rapid emergence of drug resistance can limit efficacy and lead to cross-resistance among members of the same drug class. ABT-450 is an efficacious inhibitor of HCV NS3/4A protease, with 50% effective concentration values of 1.0, 0.21, 5.3, 19, 0.09, and 0.69 nM against stable HCV replicons with NS3 protease from genotypes 1a, 1b, 2a, 3a, 4a, and 6a, respectively.In vitro, the most common amino acid variants selected by ABT-450 in genotype 1 were located in NS3 at positions 155, 156, and 168, with the D168Y variant conferring the highest level of resistance to ABT-450 in both genotype 1a and 1b replicons (219- and 337-fold, respectively). In a 3-day monotherapy study with HCV genotype 1-infected patients, ABT-450 was coadministered with ritonavir, a cytochrome P450 3A4 inhibitor shown previously to markedly increase peak, trough, and overall drug exposures of ABT-450. A mean maximum HCV RNA decline of 4.02 log10was observed at the end of the 3-day dosing period across all doses. The most common variants selected in these patients were R155K and D168V in genotype 1a and D168V in genotype 1b. However, selection of resistant variants was significantly reduced at the highest ABT-450 dose compared to lower doses. These findings were informative for the subsequent evaluation of ABT-450 in combination with additional drug classes in clinical trials in HCV-infected patients. (Study M11-602 is registered at ClinicalTrials.gov under registration no. NCT01074008.)


2020 ◽  
Author(s):  
Isabelle Desombere ◽  
Freya Van Houtte ◽  
Ali Farhoudi ◽  
Lieven Verhoye ◽  
Caroline Buysschaert ◽  
...  

Abstract Hepatitis C virus (HCV) is highly variable and transmits through infected blood to establish a chronic liver infection in the majority of patients. Our knowledge of the infectivity of clinical HCV strains is hampered by the lack of in vitro cell culture systems that support efficient viral replication. We previously reported that laboratory strains of HCV associated with non-permissive B cells could trans-infect hepatocytes and thereby evade host neutralizing antibody responses, suggesting a role for B cells in HCV transmission. To evaluate this hypothesis, we assessed the ability of B cells and sera from recent (<2 years) or chronic (≥ 2 years) infections to infect humanized liver chimeric mice. HCV was efficiently transmitted by B cells from chronically infected patients whereas the sera were non-infectious. In contrast, we noted that B cells from recently infected patients failed to transmit HCV to the mice, whereas all serum samples were infectious. Only patients with circulating anti-glycoprotein antibodies harbored genomic HCV-RNA in B cells. Taken together, our studies provide direct in vivo evidence for HCV transmission by B cells and these findings may have clinical implications for prophylactic and therapeutic antibody-based vaccine design.


Sign in / Sign up

Export Citation Format

Share Document