scholarly journals Immunoglobulin with High-TiterIn VitroCross-Neutralizing Hepatitis C Virus Antibodies Passively Protects Chimpanzees from Homologous, but Not Heterologous, Challenge

2015 ◽  
Vol 89 (17) ◽  
pp. 9128-9132 ◽  
Author(s):  
Jens Bukh ◽  
Ronald E. Engle ◽  
Kristina Faulk ◽  
Richard Y. Wang ◽  
Patrizia Farci ◽  
...  

The importance of neutralizing antibodies (NAbs) in protection against hepatitis C virus (HCV) remains controversial. We infused a chimpanzee with H06 immunoglobulin from a genotype 1a HCV-infected patient and challenged with genotype strains efficiently neutralized by H06in vitro. Genotype 1a NAbs afforded no protection against genotype 4a or 5a. Protection against homologous 1a lasted 18 weeks, but infection emerged when NAb titers waned. However, 6a infection was prevented. The differentialin vivoneutralization patterns have implications for HCV vaccine development.

2016 ◽  
Vol 60 (10) ◽  
pp. 6207-6215 ◽  
Author(s):  
Christopher M. Owens ◽  
Bradley B. Brasher ◽  
Alex Polemeropoulos ◽  
Michael H. J. Rhodin ◽  
Nicole McAllister ◽  
...  

ABSTRACTEDP-239, a novel hepatitis C virus (HCV) inhibitor targeting nonstructural protein 5A (NS5A), has been investigatedin vitroandin vivo. EDP-239 is a potent, selective inhibitor with potency at picomolar to nanomolar concentrations against HCV genotypes 1 through 6. In the presence of human serum, the potency of EDP-239 was reduced by less than 4-fold. EDP-239 is additive to synergistic with other direct-acting antivirals (DAAs) or host-targeted antivirals (HTAs) in blocking HCV replication and suppresses the selection of resistancein vitro. Furthermore, EDP-239 retains potency against known DAA- or HTA-resistant variants, with half-maximal effective concentrations (EC50s) equivalent to those for the wild type. In a phase I, single-ascending-dose, placebo-controlled clinical trial, EDP-239 demonstrated excellent pharmacokinetic properties that supported once daily dosing. A single 100-mg dose of EDP-239 resulted in reductions in HCV genotype 1a viral RNA of >3 log10IU/ml within the first 48 h after dosing and reductions in genotype 1b viral RNA of >4-log10IU/ml within 96 h. (This study has been registered at ClinicalTrials.gov under identifier NCT01856426.)


2009 ◽  
Vol 16 (7) ◽  
pp. 842-850 ◽  
Author(s):  
Arash Memarnejadian ◽  
Farzin Roohvand ◽  
Arash Arashkia ◽  
Sima Rafati ◽  
Mohammad Shokrgozar

Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 291
Author(s):  
Rodrigo Velázquez-Moctezuma ◽  
Elias H. Augestad ◽  
Matteo Castelli ◽  
Christina Holmboe Olesen ◽  
Nicola Clementi ◽  
...  

Hepatitis C virus (HCV) is a major causative agent of acute and chronic hepatitis. It is estimated that 400,000 people die every year from chronic HCV infection, mostly from severe liver-related diseases such as cirrhosis and liver cancer. Although HCV was discovered more than 30 years ago, an efficient prophylactic vaccine is still missing. The HCV glycoprotein complex, E1/E2, is the principal target of neutralizing antibodies (NAbs) and, thus, is an attractive antigen for B-cell vaccine design. However, the high genetic variability of the virus necessitates the identification of conserved epitopes. Moreover, the high intrinsic mutational capacity of HCV allows the virus to continually escape broadly NAbs (bNAbs), which is likely to cause issues with vaccine-resistant variants. Several studies have assessed the barrier-to-resistance of vaccine-relevant bNAbs in vivo and in vitro. Interestingly, recent studies have suggested that escape substitutions can confer antibody resistance not only by direct modification of the epitope but indirectly through allosteric effects, which can be grouped based on the breadth of these effects on antibody susceptibility. In this review, we summarize the current understanding of HCV-specific NAbs, with a special focus on vaccine-relevant bNAbs and their targets. We highlight antibody escape studies pointing out the different methodologies and the escape mutations identified thus far. Finally, we analyze the antibody escape mechanisms of envelope protein escape substitutions and polymorphisms according to the most recent evidence in the HCV field. The accumulated knowledge in identifying bNAb epitopes as well as assessing barriers to resistance and elucidating relevant escape mechanisms may prove critical in the successful development of an HCV B-cell vaccine.


2015 ◽  
Vol 59 (10) ◽  
pp. 6539-6550 ◽  
Author(s):  
Jeffrey J. Pouliot ◽  
Michael Thomson ◽  
Mi Xie ◽  
Joseph Horton ◽  
John Johnson ◽  
...  

ABSTRACTThe hepatitis C virus (HCV) NS4B protein is an antiviral therapeutic target for which small-molecule inhibitors have not been shown to exhibitin vivoefficacy. We describe here thein vitroandin vivoantiviral activity of GSK8853, an imidazo[1,2-a]pyrimidine inhibitor that binds NS4B protein. GSK8853 was active against multiple HCV genotypes and developedin vitroresistance mutations in both genotype 1a and genotype 1b replicons localized to the region of NS4B encoding amino acids 94 to 105. A 20-dayin vitrotreatment of replicons with GSK8853 resulted in a 2-log drop in replicon RNA levels, with no resistance mutation breakthrough. Chimeric replicons containing NS4B sequences matching known virus isolates showed similar responses to a compound with genotype 1a sequences but altered efficacy with genotype 1b sequences, likely corresponding to the presence of known resistance polymorphs in those isolates.In vivoefficacy was tested in a humanized-mouse model of HCV infection, and the results showed a 3-log drop in viral RNA loads over a 7-day period. Analysis of the virus remaining at the end ofin vivotreatment revealed resistance mutations encoding amino acid changes that had not been identified byin vitrostudies, including NS4B N56I and N99H. Our findings provide anin vivoproof of concept for HCV inhibitors targeting NS4B and demonstrate both the promise and potential pitfalls of developing NS4B inhibitors.


2019 ◽  
Vol 93 (14) ◽  
Author(s):  
Michelle D. Colbert ◽  
Andrew I. Flyak ◽  
Clinton O. Ogega ◽  
Valerie J. Kinchen ◽  
Guido Massaccesi ◽  
...  

ABSTRACTIncreasing evidence indicates that broadly neutralizing antibodies (bNAbs) play an important role in immune-mediated control of hepatitis C virus (HCV) infection, but the relative contribution of neutralizing antibodies targeting antigenic sites across the HCV envelope (E1 and E2) proteins is unclear. Here, we isolated thirteen E1E2-specific monoclonal antibodies (MAbs) from B cells of a single HCV-infected individual who cleared one genotype 1a infection and then became persistently infected with a second genotype 1a strain. These MAbs bound six distinct discontinuous antigenic sites on the E1 protein, the E2 protein, or the E1E2 heterodimer. Three antigenic sites, designated AS108, AS112 (an N-terminal E1 site), and AS146, were distinct from previously described antigenic regions (ARs) 1 to 5 and E1 sites. Antibodies targeting four sites (AR3, AR4-5, AS108, and AS146) were broadly neutralizing. These MAbs also displayed distinct patterns of relative neutralizing potency (i.e., neutralization profiles) across a panel of diverse HCV strains, which led to complementary neutralizing breadth when they were tested in combination. Overall, this study demonstrates that HCV bNAb epitopes are not restricted to previously described antigenic sites, expanding the number of sites that could be targeted for vaccine development.IMPORTANCEWorldwide, more than 70 million people are infected with hepatitis C virus (HCV), which is a leading cause of hepatocellular carcinoma and liver transplantation. Despite the development of potent direct acting antivirals (DAAs) for HCV treatment, a vaccine is urgently needed due to the high cost of treatment and the possibility of reinfection after cure. Induction of multiple broadly neutralizing antibodies (bNAbs) that target distinct epitopes on the HCV envelope proteins is one approach to vaccine development. However, antigenic sites targeted by bNAbs in individuals with spontaneous control of HCV have not been fully defined. In this study, we characterize 13 monoclonal antibodies (MAbs) from a single person who cleared an HCV infection without treatment, and we identify 3 new sites targeted by neutralizing antibodies. The sites targeted by these MAbs could inform HCV vaccine development.


2010 ◽  
Vol 54 (9) ◽  
pp. 3641-3650 ◽  
Author(s):  
Robert A. Fridell ◽  
Dike Qiu ◽  
Chunfu Wang ◽  
Lourdes Valera ◽  
Min Gao

ABSTRACT BMS-790052 is the most potent hepatitis C virus (HCV) inhibitor reported to date, with 50% effective concentrations (EC50s) of ≤50 pM against genotype 1 replicons. This exceptional potency translated to rapid viral load declines in a phase I clinical study. By targeting NS5A, BMS-790052 is distinct from most HCV inhibitors in clinical evaluation. As an initial step toward correlating in vitro and in vivo resistances, multiple cell lines and selective pressures were used to identify BMS-790052-resistant variants in genotype 1 replicons. Similarities and differences were observed between genotypes 1a and 1b. For genotype 1b, L31F/V, P32L, and Y93H/N were identified as primary resistance mutations. L23F, R30Q, and P58S acted as secondary resistance substitutions, enhancing the resistance of primary mutations but themselves not conferring resistance. For genotype 1a, more sites of resistance were identified, and substitutions at these sites (M28T, Q30E/H/R, L31M/V, P32L, and Y93C/H/N) conferred higher levels of resistance. For both subtypes, combining two resistance mutations markedly decreased inhibitor susceptibility. Selection studies with a 1b/1a hybrid replicon highlighted the importance of the NS5A N-terminal region in determining genotype-specific inhibitor responses. As single mutations, Q30E and Y93N in genotype 1a conferred the highest levels of resistance. For genotype 1b, BMS-790052 retained subnanomolar potency against all variants with single amino acid substitutions, suggesting that multiple mutations will likely be required for significant in vivo resistance in this genetic background. Importantly, BMS-790052-resistant variants remained fully sensitive to alpha interferon and small-molecule inhibitors of HCV protease and polymerase.


2006 ◽  
Vol 44 (08) ◽  
Author(s):  
P Hilgard ◽  
R Bröring ◽  
M Trippler ◽  
S Viazov ◽  
G Gerken ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1597
Author(s):  
Thuong Thi Ho ◽  
Van Thi Pham ◽  
Tra Thi Nguyen ◽  
Vy Thai Trinh ◽  
Tram Vi ◽  
...  

Nanodiamond (ND) has recently emerged as a potential nanomaterial for nanovaccine development. Here, a plant-based haemagglutinin protein (H5.c2) of A/H5N1 virus was conjugated with detonation NDs (DND) of 3.7 nm in diameter (ND4), and high-pressure and high-temperature (HPHT) oxidative NDs of ~40–70 nm (ND40) and ~100–250 nm (ND100) in diameter. Our results revealed that the surface charge, but not the size of NDs, is crucial to the protein conjugation, as well as the in vitro and in vivo behaviors of H5.c2:ND conjugates. Positively charged ND4 does not effectively form stable conjugates with H5.c2, and has no impact on the immunogenicity of the protein both in vitro and in vivo. In contrast, the negatively oxidized NDs (ND40 and ND100) are excellent protein antigen carriers. When compared to free H5.c2, H5.c2:ND40, and H5.c2:ND100 conjugates are highly immunogenic with hemagglutination titers that are both 16 times higher than that of the free H5.c2 protein. Notably, H5.c2:ND40 and H5.c2:ND100 conjugates induce over 3-folds stronger production of both H5.c2-specific-IgG and neutralizing antibodies against A/H5N1 than free H5.c2 in mice. These findings support the innovative strategy of using negatively oxidized ND particles as novel antigen carriers for vaccine development, while also highlighting the importance of particle characterization before use.


2014 ◽  
Vol 59 (1) ◽  
pp. 25-37 ◽  
Author(s):  
Lin-Zhi Chen ◽  
John P. Sabo ◽  
Elsy Philip ◽  
Lois Rowland ◽  
Yan Mao ◽  
...  

ABSTRACTThe pharmacokinetics, mass balance, and metabolism of deleobuvir, a hepatitis C virus (HCV) polymerase inhibitor, were assessed in healthy subjects following a single oral dose of 800 mg of [14C]deleobuvir (100 μCi). The overall recovery of radioactivity was 95.2%, with 95.1% recovered from feces. Deleobuvir had moderate to high clearance, and the half-life of deleobuvir and radioactivity in plasma were ∼3 h, indicating that there were no metabolites with half-lives significantly longer than that of the parent. The most frequently reported adverse events (in 6 of 12 subjects) were gastrointestinal disorders. Two major metabolites of deleobuvir were identified in plasma: an acyl glucuronide and an alkene reduction metabolite formed in the gastrointestinal (GI) tract by gut bacteria (CD 6168), representing ∼20% and 15% of the total drug-related material, respectively. Deleobuvir and CD 6168 were the main components in the fecal samples, each representing ∼30 to 35% of the dose. The majority of the remaining radioactivity found in the fecal samples (∼21% of the dose) was accounted for by three metabolites in which deleobuvir underwent both alkene reduction and monohydroxylation. In fresh human hepatocytes that form biliary canaliculi in sandwich cultures, the biliary excretion for these excretory metabolites was markedly higher than that for deleobuvir and CD 6168, implying that rapid biliary elimination upon hepatic formation may underlie the absence of these metabolites in circulation. The lowin vitroclearance was not predictive of the observedin vivoclearance, likely because major deleobuvir biotransformation occurred by non-CYP450-mediated enzymes that are not well represented in hepatocyte-basedin vitromodels.


Sign in / Sign up

Export Citation Format

Share Document