scholarly journals Probability Representation of Quantum Mechanics Where System States Are Identified with Probability Distributions

2020 ◽  
Vol 2 (1) ◽  
pp. 64-79 ◽  
Author(s):  
Vladimir Chernega ◽  
Olga Man'ko ◽  
Vladimir Man'ko

The probability representation of quantum mechanics where the system states are identified with fair probability distributions is reviewed for systems with continuous variables (the example of the oscillator) and discrete variables (the example of the qubit). The relation for the evolution of the probability distributions which determine quantum states with the Feynman path integral is found. The time-dependent phase of the wave function is related to the time-dependent probability distribution which determines the density matrix. The formal classical-like random variables associated with quantum observables for qubit systems are considered, and the connection of the statistics of the quantum observables with the classical statistics of the random variables is discussed.

Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1099 ◽  
Author(s):  
Peter Adam ◽  
Vladimir A. Andreev ◽  
Margarita A. Man’ko ◽  
Vladimir I. Man’ko ◽  
Matyas Mechler

In view of the probabilistic quantizer–dequantizer operators introduced, the qubit states (spin-1/2 particle states, two-level atom states) realizing the irreducible representation of the S U ( 2 ) symmetry group are identified with probability distributions (including the conditional ones) of classical-like dichotomic random variables. The dichotomic random variables are spin-1/2 particle projections m = ± 1 / 2 onto three perpendicular directions in the space. The invertible maps of qubit density operators onto fair probability distributions are constructed. In the suggested probability representation of quantum states, the Schrödinger and von Neumann equations for the state vectors and density operators are presented in explicit forms of the linear classical-like kinetic equations for the probability distributions of random variables. The star-product and quantizer–dequantizer formalisms are used to study the qubit properties; such formalisms are discussed for photon tomographic probability distribution and its correspondence to the Heisenberg–Weyl symmetry properties.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1702 ◽  
Author(s):  
Vladimir N. Chernega ◽  
Margarita A. Man’ko ◽  
Vladimir I. Man’ko

PT-symmetric qubit-system states are considered in the probability representation of quantum mechanics. The new energy eigenvalue equation for probability distributions identified with qubit and qutrit states is presented in an explicit form. A possibility to test PT-symmetry and its violation by measuring the probabilities of spin projections for qubits in three perpendicular directions is discussed.


2020 ◽  
Vol 18 (01) ◽  
pp. 1941021 ◽  
Author(s):  
Margarita A. Man’ko ◽  
Vladimir I. Man’ko

The description of quantum states by probability distributions of classical-like random variables associated with observables is presented. An invertible map of the wave functions and density matrices onto the probability distributions is constructed. The relation of the probability distributions to quasidistributions like the Wigner function is discussed. The interference phenomenon and superposition principle of pure quantum states are given in the form of nonlinear addition of the probabilities identified with the quantum states. The probability given by Born’s rule is expressed as a function of the probabilities describing the system states. The suggested probability representation of quantum mechanics is presented using examples of harmonic oscillators and qubits.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 549
Author(s):  
Olga V. Man’ko ◽  
Vladimir I. Man’ko

The review of new formulation of conventional quantum mechanics where the quantum states are identified with probability distributions is presented. The invertible map of density operators and wave functions onto the probability distributions describing the quantum states in quantum mechanics is constructed both for systems with continuous variables and systems with discrete variables by using the Born’s rule and recently suggested method of dequantizer–quantizer operators. Examples of discussed probability representations of qubits (spin-1/2, two-level atoms), harmonic oscillator and free particle are studied in detail. Schrödinger and von Neumann equations, as well as equations for the evolution of open systems, are written in the form of linear classical–like equations for the probability distributions determining the quantum system states. Relations to phase–space representation of quantum states (Wigner functions) with quantum tomography and classical mechanics are elucidated.


Author(s):  
Robert H. Swendsen

The theory of probability developed in Chapter 3 for discrete random variables is extended to probability distributions, in order to treat the continuous momentum variables. The Dirac delta function is introduced as a convenient tool to transform continuous random variables, in analogy with the use of the Kronecker delta for discrete random variables. The properties of the Dirac delta function that are needed in statistical mechanics are presented and explained. The addition of two continuous random numbers is given as a simple example. An application of Bayesian probability is given to illustrate its significance. However, the components of the momenta of the particles in an ideal gas are continuous variables.


2019 ◽  
Vol 1 (2) ◽  
pp. 130-150 ◽  
Author(s):  
Igor Ya. Doskoch ◽  
Margarita A. Man’ko

The basic notion of physical system states is different in classical statistical mechanics and in quantum mechanics. In classical mechanics, the particle system state is determined by its position and momentum; in the case of fluctuations, due to the motion in environment, it is determined by the probability density in the particle phase space. In quantum mechanics, the particle state is determined either by the wave function (state vector in the Hilbert space) or by the density operator. Recently, the tomographic-probability representation of quantum states was proposed, where the quantum system states were identified with fair probability distributions (tomograms). In view of the probability-distribution formalism of quantum mechanics, we formulate the superposition principle of wave functions as interference of qubit states expressed in terms of the nonlinear addition rule for the probabilities identified with the states. Additionally, we formulate the probability given by Born’s rule in terms of symplectic tomographic probability distribution determining the photon states.


2019 ◽  
Vol 26 (03) ◽  
pp. 1950016 ◽  
Author(s):  
Margarita A. Man’ko ◽  
Vladimir I. Man’ko

The superposition of pure quantum states explicitly expressed in terms of a nonlinear addition rule of state density operators is reviewed. The probability representation of density matrices of qudit states is used to formulate the interference of the states as a combination of the probability distributions describing pure states. The formalism of quantizer–dequantizer operators is developed. Examples of spin-1/2 states and f-oscillator systems are considered.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 131
Author(s):  
Peter Adam ◽  
Vladimir A. Andreev ◽  
Margarita A. Man’ko ◽  
Vladimir I. Man’ko ◽  
Matyas Mechler

We review the method of quantizers and dequantizers to construct an invertible map of the density operators onto functions including probability distributions and discuss in detail examples of qubit and qutrit states. The biphoton states existing in the process of parametric down-conversion are studied in the probability representation of quantum mechanics.


Sign in / Sign up

Export Citation Format

Share Document