scholarly journals Do Nonparametric Measures of Extreme Equity Risk Change the Parametric Ordinal Ranking? Evidence from Asia

Risks ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 121 ◽  
Author(s):  
Robert Powell ◽  
Duc Vo ◽  
Thach Pham

There has been much discussion in the literature about how central measures of equity risk such as standard deviation fail to account for extreme tail risk of equities. Similarly, parametric measures of value at risk (VaR) may also fail to account for extreme risk as they assume a normal distribution which is often not the case in practice. Nonparametric measures of extreme risk such as nonparametric VaR and conditional value at risk (CVaR) have often been found to overcome this problem by measuring actual tail risk without applying any predetermined assumptions. However, this article argues that it is not just the actual risk of equites that is important to investor choices, but also the relative (ordinal) risk of equities compared to each other. Using an applied setting of industry portfolios in a variety of Asian countries (benchmarked to the United States), over crisis and non-crisis periods, this article finds that nonparametric measures of VaR and CVaR may provide only limited new information to investors about relative risk in the portfolios examined as there is a high degree of similarity found in relative industry risk when using nonparametric metrics as compared to central or parametric measures such as standard deviation and parametric VaR.

2020 ◽  
Author(s):  
Bernard Dusseault ◽  
Philippe Pasquier

<p>The design by optimization of hybrid ground-coupled heat pump (Hy-GCHP) systems is a complex process that involves dozens of parameters, some of which cannot be known with absolute certainty. Therefore, designers face the possibility of under or oversizing Hy-GCHP systems as a result of those uncertainties. Of course, both situations are undesirable, either raising upfront costs or operating costs. The most common way designers try to evaluate their impacts and prepare the designs against unforeseen conditions is to use sensitivity analyses, an operation that can only be done after the sizing.</p><p>Traditional stochastic methods, like Markov chain Monte Carlo, can handle uncertainties during the sizing, but come at a high computational price paid for in millions of simulations. Considering that individual simulation of Hy-GCHP system operation during 10 or 20 years can range between seconds and minutes, millions of simulations are therefore not a realistic approach for design under uncertainty. Alternative stochastic design methodologies are exploited in other fields with great success that do not require nearly as many simulations. This is the case for the conditional-value-at-risk (CVaR) in the financial sector and for the net present value-at-risk (NPVaR) in civil engineering. Both financial indicators are used as objective functions in their respective fields to consider uncertainties. To do that, they involve distributions of uncertain parameters but only focus on the tail of distributions. This results in quicker optimizations but also in more conservative designs. This way, they remain profitable even when faced with extremely unfavorable conditions.</p><p>In this work, we adapt the NPVaR to make the sizing of Hy-GCHP systems under uncertainties viable. The mixed-integer non-linear optimization algorithm used jointly with the NPVaR, the Hy-GCHP simulation algorithm and the g-function assessment methods used are presented broadly, all of which are validated in this work or in referenced publications. The way in which the NPVaR is implemented is discussed, more specifically how computation time can be further reduced using a clever implementation without sacrificing its conservative property. The implications of using the NPVaR over a deterministic algorithm are investigated during a case study that revolves around the design of an Hy-GCHP system in the heating-dominated environment of Montreal (Canada). Our results show that over 1000 experiments, a design sized using the NPVaR has an average return on investment of 126,829 $ with a standard deviation of 18,499 $ while a design sized with a deterministic objective function yields 137,548 $ on average with a standard deviation of 33,150 $. Furthermore, the worst returns in both cases are respectively 35,229 $ and -32,151 $. This shows that, although slightly less profitable on average, the NPVaR is a better objective function when the concern is about avoiding losses rather than making a huge profit.</p><p>In that regard, since HVAC is usually considered a commodity rather than an investment, we believe that a more financially stable and predictable objective function is a welcome addition in the toolbox of engineers and professionals alike that deal with the design of expensive systems such as Hy-GCHP.</p>


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1677
Author(s):  
Zdravka Aljinović ◽  
Branka Marasović ◽  
Tea Šestanović

This paper proposes the PROMETHEE II based multicriteria approach for cryptocurrency portfolio selection. Such an approach allows considering a number of variables important for cryptocurrencies rather than limiting them to the commonly employed return and risk. The proposed multiobjective decision making model gives the best cryptocurrency portfolio considering the daily return, standard deviation, value-at-risk, conditional value-at-risk, volume, market capitalization and attractiveness of nine cryptocurrencies from January 2017 to February 2020. The optimal portfolios are calculated at the first of each month by taking the previous 6 months of daily data for the calculations yielding with 32 optimal portfolios in 32 successive months. The out-of-sample performances of the proposed model are compared with five commonly used optimal portfolio models, i.e., naïve portfolio, two mean-variance models (in the middle and at the end of the efficient frontier), maximum Sharpe ratio and the middle of the mean-CVaR (conditional value-at-risk) efficient frontier, based on the average return, standard deviation and VaR (value-at-risk) of the returns in the next 30 days and the return in the next trading day for all portfolios on 32 dates. The proposed model wins against all other models according to all observed indicators, with the winnings spanning from 50% up to 94%, proving the benefits of employing more criteria and the appropriate multicriteria approach in the cryptocurrency portfolio selection process.


2014 ◽  
Vol 16 (6) ◽  
pp. 3-29 ◽  
Author(s):  
Samuel Drapeau ◽  
Michael Kupper ◽  
Antonis Papapantoleon

2014 ◽  
Vol 59 (2) ◽  
pp. 116-135 ◽  
Author(s):  
Stephan A. Trusevych ◽  
Roy H. Kwon ◽  
Andrew K. S. Jardine

Sign in / Sign up

Export Citation Format

Share Document