scholarly journals Proposed Smooth-STC Algorithm for Enhanced Coverage Path Planning Performance in Mobile Robot Applications

Robotics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 44 ◽  
Author(s):  
Hai Van Pham ◽  
Philip Moore ◽  
Dinh Xuan Truong

Robotic path planning is a field of research which is gaining traction given the broad domains of interest to which path planning is an important systemic requirement. The aim of path planning is to optimise the efficacy of robotic movement in a defined operational environment. For example, robots have been employed in many domains including: Cleaning robots (such as vacuum cleaners), automated paint spraying robots, window cleaning robots, forest monitoring robots, and agricultural robots (often driven using satellite and geostationary positional satellite data). Additionally, mobile robotic systems have been utilised in disaster areas and locations hazardous to humans (such as war zones in mine clearance). The coverage path planning problem describes an approach which is designed to determine the path that traverses all points in a defined operational environment while avoiding static and dynamic (moving) obstacles. In this paper we present our proposed Smooth-STC model, the aim of the model being to identify an optimal path, avoid all obstacles, prevent (or at least minimise) backtracking, and maximise the coverage in any defined operational environment. The experimental results in a simulation show that, in uncertain environments, our proposed smooth STC method achieves an almost absolute coverage rate and demonstrates improvement when measured against alternative conventional algorithms.

2019 ◽  
Vol 10 (1) ◽  
pp. 305
Author(s):  
Yong Tao ◽  
Chaoyong Chen ◽  
Tianmiao Wang ◽  
Youdong Chen ◽  
Hegen Xiong ◽  
...  

A re-entry path planning method in omitting areas for service robots is suggested based on dynamic Inver-Over evolutionary algorithms after the robot automatically avoids obstacles. The complete coverage path planning is researched for cleaning service robots. Combined with features of dynamic travelling salesmen problem (DTSP), a local operator is employed for the path planning to enhance real-time dynamic properties of the Inver-Over algorithm. The method addresses the path planning problem that a number of cells undergo dynamic changes over time under work environment of cleaning robots. With simulations and experiments performed, it is discovered that the average relative error is 2.2% between the re-entry path planning and the best path, which validates the effectiveness and feasibility of the method.


Author(s):  
Prithviraj Dasgupta

The multi-robot coverage path-planning problem involves finding collision-free paths for a set of robots so that they can completely cover the surface of an environment. This problem is non-trivial as the geometry and location of obstacles in the environment is usually not known a priori by the robots, and they have to adapt their coverage path as they discover obstacles while moving in the environment. Additionally, the robots have to avoid repeated coverage of the same region by each other to reduce the coverage time and energy expended. This chapter discusses the research results in developing multi-robot coverage path planning techniques using mini-robots that are coordinated to move in formation. The authors present theoretical and experimental results of the proposed approach using e-puck mini-robots. Finally, they discuss some preliminary results to lay the foundation of future research for improved coverage path planning using coalition game-based, structured, robot team reconfiguration techniques.


Robotica ◽  
1998 ◽  
Vol 16 (5) ◽  
pp. 575-588 ◽  
Author(s):  
Andreas C. Nearchou

A genetic algorithm for the path planning problem of a mobile robot which is moving and picking up loads on its way is presented. Assuming a findpath problem in a graph, the proposed algorithm determines a near-optimal path solution using a bit-string encoding of selected graph vertices. Several simulation results of specific task-oriented variants of the basic path planning problem using the proposed genetic algorithm are provided. The results obtained are compared with ones yielded by hill-climbing and simulated annealing techniques, showing a higher or at least equally well performance for the genetic algorithm.


2021 ◽  
pp. 1-15
Author(s):  
Zheping Yan ◽  
Jinzhong Zhang ◽  
Jia Zeng ◽  
Jialing Tang

In this paper, a water wave optimization (WWO) algorithm is proposed to solve the autonomous underwater vehicle (AUV) path planning problem to obtain an optimal or near-optimal path in the marine environment. Path planning is a prerequisite for the realization of submarine reconnaissance, surveillance, combat and other underwater tasks. The WWO algorithm based on shallow wave theory is a novel evolutionary algorithm that mimics wave motions containing propagation, refraction and breaking to obtain the global optimization solution. The WWO algorithm not only avoids jumps out of the local optimum and premature convergence but also has a faster convergence speed and higher calculation accuracy. To verify the effectiveness and feasibility, the WWO algorithm is applied to solve the randomly generated threat areas and generated fixed threat areas. Compared with other algorithms, the WWO algorithm can effectively balance exploration and exploitation to avoid threat areas and reach the intended target with minimum fuel costs. The experimental results demonstrate that the WWO algorithm has better optimization performance and is robust.


2016 ◽  
Vol 26 (2) ◽  
pp. 297-308 ◽  
Author(s):  
Martin Klaučo ◽  
Slavomír Blažek ◽  
Michal Kvasnica

Abstract A path planning problem for a heterogeneous vehicle is considered. Such a vehicle consists of two parts which have the ability to move individually, but one of them has a shorter range and is therefore required to keep in a close distance to the main vehicle. The objective is to devise an optimal path of minimal length under the condition that at least one part of the heterogeneous system visits all desired waypoints exactly once. Two versions of the problem are considered. One assumes that the order in which the waypoints are visited is known a priori. In such a case we show that the optimal path can be found by solving a mixed-integer second-order cone problem. The second version assumes that the order in which the waypoints are visited is not known a priori, but can be optimized so as to shorten the length of the path. Two approaches to solve this problem are presented and evaluated with respect to computational complexity.


Sign in / Sign up

Export Citation Format

Share Document