scholarly journals Investigating Arctic Sea Ice Survivability in the Beaufort Sea

2018 ◽  
Vol 10 (2) ◽  
pp. 267 ◽  
Author(s):  
Matthew Tooth ◽  
Mark Tschudi
Elem Sci Anth ◽  
2017 ◽  
Vol 5 (0) ◽  
pp. 40 ◽  
Author(s):  
Byongjun Hwang ◽  
Jeremy Wilkinson ◽  
Edward Maksym ◽  
Hans C. Graber ◽  
Axel Schweiger ◽  
...  

2021 ◽  
Author(s):  
Miao Bi ◽  
Qingquan Li ◽  
Song Yang ◽  
Dong Guo ◽  
Xinyong Shen ◽  
...  

AbstractExtreme cold events (ECEs) on the Tibetan Plateau (TP) exert serious impacts on agriculture and animal husbandry and are important drivers of ecological and environmental changes. We investigate the temporal and spatial characteristics of the ECEs on the TP and the possible effects of Arctic sea ice. The daily observed minimum air temperature at 73 meteorological stations on the TP during 1980–2018 and the BCC_AGCM3_MR model are used. Our results show that the main mode of winter ECEs over the TP exhibits the same spatial variation and interannual variability across the whole region and is affected by two wave trains originating from the Arctic. The southern wave train is controlled by the sea ice in the Beaufort Sea. It initiates in the Norwegian Sea, and then passes through the North Atlantic Ocean, the Arabian Sea, and the Bay of Bengal along the subtropical westerly jet stream. It enters the TP from the south and brings warm, humid air from the oceans. By contrast, the northern wave train is controlled by the sea ice in the Laptev Sea. It originates from the Barents and Kara seas, passes through Lake Baikal, and enters the TP from the north, bringing dry and cold air. A decrease in the sea ice in the Beaufort Sea causes positive potential height anomalies in the Arctic. This change enhances the pressure gradient between the Artic and the mid-latitudes, leading to westerly winds in the northern TP, which block the intrusion of cold air into the south. By contrast, a decrease in the sea ice in the Laptev Sea causes negative potential height anomalies in the Artic. This change reduces the pressure gradient between the Artic and the mid-latitudes, leading to easterly winds to the north of the TP, which favors the southward intrusion of cold polar air. A continuous decrease in the amount of sea ice in the Beaufort Sea would reduce the frequency of ECEs over the TP and further aggravate TP warming in winter.


2011 ◽  
Vol 52 (57) ◽  
pp. 355-359 ◽  
Author(s):  
Donald K. Perovich ◽  
Jacqueline A. Richter-Menge ◽  
Kathleen F. Jones ◽  
Bonnie Light ◽  
Bruce C. Elder ◽  
...  

AbstractThere has been a marked decline in the summer extent of Arctic sea ice over the past few decades. Data from autonomous ice mass-balance buoys can enhance our understanding of this decline. These buoys monitor changes in snow deposition and ablation, ice growth, and ice surface and bottom melt. Results from the summer of 2008 showed considerable large-scale spatial variability in the amount of surface and bottom melt. Small amounts of melting were observed north of Greenland, while melting in the southern Beaufort Sea was quite large. Comparison of net solar heat input to the ice and heat required for surface ablation showed only modest correlation. However, there was a strong correlation between solar heat input to the ocean and bottom melting. As the ice concentration in the Beaufort Sea region decreased, there was an increase in solar heat to the ocean and an increase in bottom melting.


Polar Biology ◽  
2010 ◽  
Vol 34 (12) ◽  
pp. 1857-1868 ◽  
Author(s):  
Thomas A. Brown ◽  
Simon T. Belt ◽  
Benoît Philippe ◽  
Christopher J. Mundy ◽  
Guillaume Massé ◽  
...  

Author(s):  
S. Zhang ◽  
Y. Zuo ◽  
F. Xiao ◽  
L. Yuan ◽  
T. Geng ◽  
...  

<p><strong>Abstract.</strong> Satellite altimetry has been used to observe the Arctic sea ice in long term and large scale, and the records show a continued decline for Arctic sea ice thickness over decades. In this study, the sea ice freeboard in Beaufort Sea of Arctic have been estimated using CryoSat-2 data, and validated with Upward Looking Sonar (ULS) data of Beaufort Gyre Exploration Project (BGEP). The results show an obvious seasonal variation of the Beaufort Sea with a high reliability estimation of the sea ice freeboard. The average height of the sea ice freeboard increase from January to March and achieve the maximum value 0.38&amp;thinsp;m in March. The sea ice melts after March and the average height of the sea ice freeboard reduces to the minimum 0.12&amp;thinsp;m in August. In the next few months the sea water begins to freeze and the average height of the sea ice freeboard will increase to the maximum value.</p>


2020 ◽  
pp. 024
Author(s):  
Rym Msadek ◽  
Gilles Garric ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Lauriane Batté ◽  
...  

L'Arctique est la région du globe qui s'est réchauffée le plus vite au cours des trente dernières années, avec une augmentation de la température de surface environ deux fois plus rapide que pour la moyenne globale. Le déclin de la banquise arctique observé depuis le début de l'ère satellitaire et attribué principalement à l'augmentation de la concentration des gaz à effet de serre aurait joué un rôle important dans cette amplification des températures au pôle. Cette fonte importante des glaces arctiques, qui devrait s'accélérer dans les décennies à venir, pourrait modifier les vents en haute altitude et potentiellement avoir un impact sur le climat des moyennes latitudes. L'étendue de la banquise arctique varie considérablement d'une saison à l'autre, d'une année à l'autre, d'une décennie à l'autre. Améliorer notre capacité à prévoir ces variations nécessite de comprendre, observer et modéliser les interactions entre la banquise et les autres composantes du système Terre, telles que l'océan, l'atmosphère ou la biosphère, à différentes échelles de temps. La réalisation de prévisions saisonnières de la banquise arctique est très récente comparée aux prévisions du temps ou aux prévisions saisonnières de paramètres météorologiques (température, précipitation). Les résultats ayant émergé au cours des dix dernières années mettent en évidence l'importance des observations de l'épaisseur de la glace de mer pour prévoir l'évolution de la banquise estivale plusieurs mois à l'avance. Surface temperatures over the Arctic region have been increasing twice as fast as global mean temperatures, a phenomenon known as arctic amplification. One main contributor to this polar warming is the large decline of Arctic sea ice observed since the beginning of satellite observations, which has been attributed to the increase of greenhouse gases. The acceleration of Arctic sea ice loss that is projected for the coming decades could modify the upper level atmospheric circulation yielding climate impacts up to the mid-latitudes. There is considerable variability in the spatial extent of ice cover on seasonal, interannual and decadal time scales. Better understanding, observing and modelling the interactions between sea ice and the other components of the climate system is key for improved predictions of Arctic sea ice in the future. Running operational-like seasonal predictions of Arctic sea ice is a quite recent effort compared to weather predictions or seasonal predictions of atmospheric fields like temperature or precipitation. Recent results stress the importance of sea ice thickness observations to improve seasonal predictions of Arctic sea ice conditions during summer.


1988 ◽  
Author(s):  
NAVAL POLAR OCEANOGRAPHY CENTER WASHINGTON DC

Sign in / Sign up

Export Citation Format

Share Document