scholarly journals Projecting Climate and Land Use Change Impacts on Actual Evapotranspiration for the Narmada River Basin in Central India in the Future

2018 ◽  
Vol 10 (4) ◽  
pp. 578 ◽  
Author(s):  
Sananda Kundu ◽  
Arun Mondal ◽  
Deepak Khare ◽  
Christopher Hain ◽  
Venkat Lakshmi
2021 ◽  
Author(s):  
Amit Kumar ◽  
Kumar Gaurav

<p>Climate and land-use change have altered the regional hydrological cycle. As a result, the mean summer monsoon rainfall has decreased by 10 % over central India during 1950-2015. This study evaluates the combined effect of climate and land-use change on the hydrological response of the upper Betwa River basin in Central India. We use Landsat satellite images from 1990 to 2018 to compute the changes in various land-use types; waterbody, built-up, forest, agriculture, and open land. In the past two decades, we found that the water body, built-up, and cropland have increased by 63 %, 65 %, and 3 %, respectively. However, forest and open land have decreased by 16 % and 23 %. Further, we observed a significant increase in annual average temperature and a decrease in the mean rainfall in the study area during 1980-2018.</p><p>We then coupled the land-use change with weather parameters (precipitation, temperature, wind speed, solar radiation, and relative humidity) and setup the SWAT (Soil and water assessment tool) model to simulate the hydrological responses in the catchment. We have run this model for two different time steps, 1980-2000 and 1998-2018, using the land-use of 1990 and 2018. Calibration and validation are performed for (1991-1994, 2000-2004) and (1995-1998, 2005-2008) respectively using SUFI-2 method. Our results show that the surface runoff and percolation decreased by -21 and -9 %, whereas evapotranspiration increased by 3 % in the upper Betwa River basin during 2001-2018. A decrease in rainfall, runoff, and percolation will have considerable implications on regional water security.</p>


2021 ◽  
Vol 13 (4) ◽  
pp. 647
Author(s):  
Fan Sun ◽  
Yi Wang ◽  
Yaning Chen ◽  
Yupeng Li ◽  
Qifei Zhang ◽  
...  

The desert-oasis ecotone, as a crucial natural barrier, maintains the stability of oasis agricultural production and protects oasis habitat security. This paper investigates the dynamic evolution of the desert-oasis ecotone in the Tarim River Basin and predicts the near-future land-use change in the desert-oasis ecotone using the cellular automata–Markov (CA-Markov) model. Results indicate that the overall area of the desert-oasis ecotone shows a shrinking trend (from 67,642 km2 in 1990 to 46,613 km2 in 2015) and the land-use change within the desert-oasis ecotone is mainly manifested by the conversion of a large amount of forest and grass area into arable land. The increasing demand for arable land for groundwater has led to a decline in the groundwater level, which is an important reason for the habitat deterioration in the desert-oasis ecotone. The rising temperature and drought have further exacerbated this trend. Assuming the current trend in development without intervention, the CA-Markov model predicts that by 2030, there will be an additional 1566 km2 of arable land and a reduction of 1151 km2 in forested area and grassland within the desert-oasis ecotone, which will inevitably further weaken the ecological barrier role of the desert-oasis ecotone and trigger a growing ecological crisis.


2021 ◽  
Vol 55 (3) ◽  
pp. 1566-1575 ◽  
Author(s):  
Kelsie M. Ferin ◽  
Luoye Chen ◽  
Jia Zhong ◽  
Sarah Acquah ◽  
Emily A. Heaton ◽  
...  

Author(s):  
L. F. de Sousa ◽  
C. A. S. Santos ◽  
R. L. Gomes ◽  
F. A. Rocha ◽  
R. M. de Jesus

Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 286
Author(s):  
Dingrao Feng ◽  
Wenkai Bao ◽  
Meichen Fu ◽  
Min Zhang ◽  
Yiyu Sun

Land use change plays a key role in terrestrial systems and drives the process of ecological pattern change. It is important to investigate the process of land use change, predict land use patterns, and reveal the characteristics of land use dynamics. In this study, we adopted the Markov model and future land use (FLUS) model to predict the future land use conditions in Xi’an city. Furthermore, we investigated the characteristics of land use change from a novel perspective, i.e., via establishment of a complex network model. This model captured the characteristics of the land use system during different periods. The results indicated that urban expansion and cropland loss played an important role in land use pattern change. The future gravity center of urban development moved along the opposite direction to that from 2000 to 2015 in Xi’an city. Although the rate of urban expansion declined in the future, urban expansion remained the primary driver of land use change. The primary urban development directions were east-southeast (ENE), north-northeast (NNE) and west-southwest (WSW) from 1990 to 2000, 2000 to 2015, and 2015 to 2030, respectively. In fact, cropland played a vital role in land use dynamics regarding all land use types, and the stability of the land use system decreased in the future. Our study provides future land use patterns and a novel perspective to better understand land use change.


Sign in / Sign up

Export Citation Format

Share Document