scholarly journals ISAR Autofocus Imaging Algorithm for Maneuvering Targets Based on Phase Retrieval and Gabor Wavelet Transform

2018 ◽  
Vol 10 (11) ◽  
pp. 1810 ◽  
Author(s):  
Hongyin Shi ◽  
Ting Yang ◽  
Zhijun Qiao

The imaging issue of a rotating maneuvering target with a large angle and a high translational speed has been a challenging problem in the area of inverse synthetic aperture radar (ISAR) autofocus imaging, in particular when the target has both radial and angular accelerations. In this paper, on the basis of the phase retrieval algorithm and the Gabor wavelet transform (GWT), we propose a new method for phase error correction. The approach first performs the range compression on ISAR raw data to obtain range profiles, and then carries out the GWT transform as the time-frequency analysis tool for the rotational motion compensation (RMC) requirement. The time-varying terms, caused by rotational motion in the Doppler frequency shift, are able to be eliminated at the selected time frame. Furthermore, the processed backscattered signal is transformed to the one in the frequency domain while applying the phase retrieval to run the translational motion compensation (TMC). Phase retrieval plays an important role in range tracking, because the ISAR echo module is not affected by both radial velocity and the acceleration of the target. Finally, after the removal of both the rotational and translational motion errors, the time-invariant Doppler shift is generated, and radar returned signals from the same scatterer are always kept in the same range cell. Therefore, the unwanted motion effects can be removed by applying this approach to have an autofocused ISAR image of the maneuvering target. Furthermore, the method does not need to estimate any motion parameters of the maneuvering target, which has proven to be very effective for an ideal range–Doppler processing. Experimental and simulation results verify the feasibility of this approach.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Hongyin Shi ◽  
Ting Yang ◽  
Yue Liu ◽  
Jingjing Si

In the current scenario of high-range resolution radar and noncooperative target, the rotational motion parameters of the target are unknown and migration through resolution cells (MTRC) is apparent in the obtained inverse synthetic aperture radar (ISAR)images, in both slant-range and cross-range directions. In the case of the high-speed maneuvering target with a small value of rotation, the phase retrieval algorithm can be applied to compensate for the translational motion to form an autofocusing image. However, when the target has a relatively large rotation angle during the coherent integration time, phase retrieval method cannot get an acceptable image for viewing and analysis as the location of the scatterer will not be true due to the Doppler shift imposed by the target’s rotational motion. In this paper, a novel ISAR imaging method for maneuvering targets based on phase retrieval and keystone transform is proposed, which can effectively solve the above problems. First, the keystone transform is used to solve the MTRC effects caused by the rotation component. Next, phase errors caused by the remaining translational motion will be removed by employing phase retrieval algorithm, allowing the scatterers are always kept in their range cells. Finally, the Doppler frequency shifts of scatterers will be time invariant in the phase of the received signal. Furthermore, this approach does not need to estimate the motion parameters of the target, which simplifies the processing steps. The simulated results demonstrate the validity of this method.


2008 ◽  
Vol 57 (12) ◽  
pp. 7747
Author(s):  
Deng Yu-Qiang ◽  
Lang Li-Ying ◽  
Xing Qi-Rong ◽  
Cao Shi-Ying ◽  
Yu Jing ◽  
...  

2011 ◽  
Vol 36 (5) ◽  
pp. 3205-3213 ◽  
Author(s):  
Şafak Saraydemir ◽  
Necmi Taşpınar ◽  
Osman Eroğul ◽  
Hülya Kayserili ◽  
Nuriye Dinçkan

Sign in / Sign up

Export Citation Format

Share Document