scholarly journals Instantaneous Top-of-Atmosphere Albedo Comparison between CERES and MISR over the Arctic

2018 ◽  
Vol 10 (12) ◽  
pp. 1882 ◽  
Author(s):  
Yizhe Zhan ◽  
Larry Di Girolamo ◽  
Roger Davies ◽  
Catherine Moroney

The top-of-atmosphere (TOA) albedo is one of the key parameters in determining the Arctic radiation budget, with continued validation of its retrieval accuracy still required. Based on three years (2007, 2015, 2016) of summertime (May–September) observations from the Clouds and the Earth’s Radiant Energy System (CERES) and the Multi-angle Imaging SpectroRadiometer (MISR), collocated instantaneous albedos for overcast ocean and snow/ice scenes were compared within the Arctic. For samples where both instruments classified the scene as overcast, the relative root-mean-square (RMS) difference between the sample albedos grew as the solar zenith angle (SZA) increased. The RMS differences that were purely due to differential Bidirectional Reflectance Factor (BRF) anisotropic corrections ( σ A D M ) were estimated to be less than 4% for overcast ocean and overcast snow/ice when the SZA ≤ 70°. The significant agreement between the CERES and MISR strongly increased our confidence in using the instruments overcast cloud albedos in Arctic studies. Nevertheless, there was less agreement in the cloud albedos for larger solar zenith angles, where the RMS differences of σ A D M reached 13.5% for overcast ocean scenes when the SZA > 80°. Additionally, inconsistencies between the CERES and MISR scene identifications were examined, resulting in an overall recommendation for improvements to the MISR snow/ice mask and a rework of the MISR Albedo Cloud Designation (ACD) field by incorporating known strengths of the standard MISR cloud masks.

2018 ◽  
Vol 10 (10) ◽  
pp. 1539 ◽  
Author(s):  
Steven Dewitte ◽  
Nicolas Clerbaux

The Earth Radiation Budget (ERB) at the top of the atmosphere quantifies how the earth gains energy from the sun and loses energy to space. Its monitoring is of fundamental importance for understanding ongoing climate change. In this paper, decadal changes of the Outgoing Longwave Radiation (OLR) as measured by the Clouds and Earth’s Radiant Energy System from 2000 to 2018, the Earth Radiation Budget Experiment from 1985 to 1998, and the High-resolution Infrared Radiation Sounder from 1985 to 2018 are analysed. The OLR has been rising since 1985, and correlates well with the rising global temperature. An observational estimate of the derivative of the OLR with respect to temperature of 2.93 +/− 0.3 W/m 2 K is obtained. The regional patterns of the observed OLR change from 1985–2000 to 2001–2017 show a warming pattern in the Northern Hemisphere in particular in the Arctic, as well as tropical cloudiness changes related to a strengthening of La Niña.


2020 ◽  
Vol 80 (2) ◽  
pp. 147-163
Author(s):  
X Liu ◽  
Y Kang ◽  
Q Liu ◽  
Z Guo ◽  
Y Chen ◽  
...  

The regional climate model RegCM version 4.6, developed by the European Centre for Medium-Range Weather Forecasts Reanalysis, was used to simulate the radiation budget over China. Clouds and the Earth’s Radiant Energy System (CERES) satellite data were utilized to evaluate the simulation results based on 4 radiative components: net shortwave (NSW) radiation at the surface of the earth and top of the atmosphere (TOA) under all-sky and clear-sky conditions. The performance of the model for low-value areas of NSW was superior to that for high-value areas. NSW at the surface and TOA under all-sky conditions was significantly underestimated; the spatial distribution of the bias was negative in the north and positive in the south, bounded by 25°N for the annual and seasonal averaged difference maps. Compared with the all-sky condition, the simulation effect under clear-sky conditions was significantly better, which indicates that the cloud fraction is the key factor affecting the accuracy of the simulation. In particular, the bias of the TOA NSW under the clear-sky condition was <±10 W m-2 in the eastern areas. The performance of the model was better over the eastern monsoon region in winter and autumn for surface NSW under clear-sky conditions, which may be related to different levels of air pollution during each season. Among the 3 areas, the regional average biases overall were largest (negative) over the Qinghai-Tibet alpine region and smallest over the eastern monsoon region.


2020 ◽  
Vol 12 (6) ◽  
pp. 929 ◽  
Author(s):  
Nicolas Clerbaux ◽  
Tom Akkermans ◽  
Edward Baudrez ◽  
Almudena Velazquez Blazquez ◽  
William Moutier ◽  
...  

Data from the Advanced Very High Resolution Radiometer (AVHRR) have been used to create several long-duration data records of geophysical variables describing the atmosphere and land and water surfaces. In the Climate Monitoring Satellite Application Facility (CM SAF) project, AVHRR data are used to derive the Cloud, Albedo, and Radiation (CLARA) climate data records of radiation components (i.a., surface albedo) and cloud properties (i.a., cloud cover). This work describes the methodology implemented for the additional estimation of the Outgoing Longwave Radiation (OLR), an important Earth radiation budget component, that is consistent with the other CLARA variables. A first step is the estimation of the instantaneous OLR from the AVHRR observations. This is done by regressions on a large database of collocated observations between AVHRR Channel 4 (10.8 µm) and 5 (12 µm) and the OLR from the Clouds and Earth’s Radiant Energy System (CERES) instruments. We investigate the applicability of this method to the first generation of AVHRR instrument (AVHRR/1) for which no Channel 5 observation is available. A second step concerns the estimation of daily and monthly OLR from the instantaneous AVHRR overpasses. This step is especially important given the changes in the local time of the observations due to the orbital drift of the NOAA satellites. We investigate the use of OLR in the ERA5 reanalysis to estimate the diurnal variation. The developed approach proves to be valuable to model the diurnal change in OLR due to day/night time warming/cooling over clear land. Finally, the resulting monthly mean AVHRR OLR product is intercompared with the CERES monthly mean product. For a typical configuration with one morning and one afternoon AVHRR observation, the Root Mean Square (RMS) difference with CERES monthly mean OLR is about 2 Wm−2 at 1° × 1° resolution. We quantify the degradation of the OLR product when only one AVHRR instrument is available (as is the case for some periods in the 1980s) and also the improvement when more instruments are available (e.g., using METOP-A, NOAA-15, NOAA-18, and NOAA-19 in 2012). The degradation of the OLR product from AVHRR/1 instruments is also quantified, which is done by “masking” the Channel 5 observations.


2017 ◽  
Vol 98 (7) ◽  
pp. 1399-1426 ◽  
Author(s):  
William L. Smith ◽  
Christy Hansen ◽  
Anthony Bucholtz ◽  
Bruce E. Anderson ◽  
Matthew Beckley ◽  
...  

Abstract The National Aeronautics and Space Administration (NASA)’s Arctic Radiation-IceBridge Sea and Ice Experiment (ARISE) acquired unique aircraft data on atmospheric radiation and sea ice properties during the critical late summer to autumn sea ice minimum and commencement of refreezing. The C-130 aircraft flew 15 missions over the Beaufort Sea between 4 and 24 September 2014. ARISE deployed a shortwave and longwave broadband radiometer (BBR) system from the Naval Research Laboratory; a Solar Spectral Flux Radiometer (SSFR) from the University of Colorado Boulder; the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) from the NASA Ames Research Center; cloud microprobes from the NASA Langley Research Center; and the Land, Vegetation and Ice Sensor (LVIS) laser altimeter system from the NASA Goddard Space Flight Center. These instruments sampled the radiant energy exchange between clouds and a variety of sea ice scenarios, including prior to and after refreezing began. The most critical and unique aspect of ARISE mission planning was to coordinate the flight tracks with NASA Cloud and the Earth’s Radiant Energy System (CERES) satellite sensor observations in such a way that satellite sensor angular dependence models and derived top-of-atmosphere fluxes could be validated against the aircraft data over large gridbox domains of order 100–200 km. This was accomplished over open ocean, over the marginal ice zone (MIZ), and over a region of heavy sea ice concentration, in cloudy and clear skies. ARISE data will be valuable to the community for providing better interpretation of satellite energy budget measurements in the Arctic and for process studies involving ice–cloud–atmosphere energy exchange during the sea ice transition period.


2008 ◽  
Vol 21 (17) ◽  
pp. 4223-4241 ◽  
Author(s):  
Seiji Kato ◽  
Fred G. Rose ◽  
David A. Rutan ◽  
Thomas P. Charlock

Abstract The zonal mean atmospheric cloud radiative effect, defined as the difference between the top-of-the-atmosphere (TOA) and surface cloud radiative effects, is estimated from 3 yr of Clouds and the Earth’s Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of the cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of the mean zonal available potential energy. Because the atmospheric cooling effect in polar regions is predominately caused by low-level clouds, which tend to be stationary, it is postulated here that the meridional and vertical gradients of the cloud effect increase the rate of meridional energy transport by the dynamics of the atmosphere from the midlatitudes to the polar region, especially in fall and winter. Clouds then warm the surface in the polar regions except in the Arctic in summer. Clouds, therefore, contribute toward increasing the rate of meridional energy transport from the midlatitudes to the polar regions through the atmosphere.


2019 ◽  
Vol 32 (16) ◽  
pp. 5003-5019 ◽  
Author(s):  
Norman G. Loeb ◽  
Hailan Wang ◽  
Fred G. Rose ◽  
Seiji Kato ◽  
William L. Smith ◽  
...  

AbstractA diagnostic tool for determining surface and atmospheric contributions to interannual variations in top-of-atmosphere (TOA) reflected shortwave (SW) and net downward SW surface radiative fluxes is introduced. The method requires only upward and downward radiative fluxes at the TOA and surface as input and therefore can readily be applied to both satellite-derived and model-generated radiative fluxes. Observations from the Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Edition 4.0 product show that 81% of the monthly variability in global mean reflected SW TOA flux anomalies is associated with atmospheric variations (mainly clouds), 6% is from surface variations, and 13% is from atmosphere–surface covariability. Over the Arctic Ocean, most of the variability in both reflected SW TOA flux and net downward SW surface flux anomalies is explained by variations in sea ice and cloud fraction alone (r2 = 0.94). Compared to CERES, variability in two reanalyses—the ECMWF interim reanalysis (ERA-Interim) and NASA’s Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2)—show large differences in the regional distribution of variance for both the atmospheric and surface contributions to anomalies in net downward SW surface flux. For MERRA-2 the atmospheric contribution is 17% too large compared to CERES while ERA-Interim underestimates the variance by 15%. The difference is mainly due to how cloud variations are represented in the reanalyses. The overall surface contribution in both ERA-Interim and MERRA-2 is smaller than CERES EBAF by 15% for ERA-Interim and 58% for MERRA-2, highlighting limitations of the reanalyses in representing surface albedo variations and their influence on SW radiative fluxes.


2020 ◽  
Vol 12 (12) ◽  
pp. 1950
Author(s):  
Seiji Kato ◽  
David A. Rutan ◽  
Fred G. Rose ◽  
Thomas E. Caldwell ◽  
Seung-Hee Ham ◽  
...  

The Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Edition 4.1 data product provides global surface irradiances. Uncertainties in the global and regional monthly and annual mean all-sky net shortwave, longwave, and shortwave plus longwave (total) irradiances are estimated using ground-based observations. Error covariance is derived from surface irradiance sensitivity to surface, atmospheric, cloud and aerosol property perturbations. Uncertainties in global annual mean net shortwave, longwave, and total irradiances at the surface are, respectively, 5.7 Wm−2, 6.7 Wm−2, and 9.7 Wm−2. In addition, the uncertainty in surface downward irradiance monthly anomalies and their trends are estimated based on the difference derived from EBAF surface irradiances and observations. The uncertainty in the decadal trend suggests that when differences of decadal global mean downward shortwave and longwave irradiances are, respectively, greater than 0.45 Wm−2 and 0.52 Wm−2, the difference is larger than 1σ uncertainties. However, surface irradiance observation sites are located predominately over tropical oceans and the northern hemisphere mid-latitude. As a consequence, the effect of a discontinuity introduced by using multiple geostationary satellites in deriving cloud properties is likely to be excluded from these trend and decadal change uncertainty estimates. Nevertheless, the monthly anomaly timeseries of radiative cooling in the atmosphere (multiplied by −1) agrees reasonably well with the anomaly time series of diabatic heating derived from global mean precipitation and sensible heat flux with a correlation coefficient of 0.46.


2018 ◽  
Vol 55 (9) ◽  
pp. 092802
Author(s):  
甄治钧 Zhen Zhijun ◽  
陈圣波 Chen Shengbo ◽  
覃文汉 Qin Wenhan ◽  
李健 Li Jian ◽  
孟凡晓 Meng Fanxiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document