scholarly journals Infrared Small Target Detection via Modified Random Walks

2018 ◽  
Vol 10 (12) ◽  
pp. 2004 ◽  
Author(s):  
Chaoqun Xia ◽  
Xiaorun Li ◽  
Liaoying Zhao

Infrared small target detection under intricate background and heavy noise is one of the crucial tasks in the field of remote sensing. Conventional algorithms can fail in detecting small targets due to the low signal-to-noise ratios of the images. To solve this problem, an effective infrared small target detection algorithm inspired by random walks is presented in this paper. The novelty of our contribution involves the combination of the local contrast feature and the global uniqueness of the small targets. Firstly, the original pixel-wise image is transformed into an multi-dimensional image with respect to the local contrast measure. Secondly, a reconstructed seeds selection map (SSM) is generated based on the multi-dimensional image. Then, an adaptive seeds selection method is proposed to automatically select the foreground seeds potentially placed in the areas of the small targets in the SSM. After that, a confidence map is constructed using a modified random walks (MRW) algorithm to represent the global uniqueness of the small targets. Finally, we segment the targets from the confidence map by utilizing an adaptive threshold. Extensive experimental evaluation results on a real test dataset demonstrate that our algorithm is superior to the state-of-the-art algorithms in both target enhancement and detection performance.

Author(s):  
Zhiwei Hu ◽  
Yixin Su

Infrared small target detection is one of the key techniques in infrared imaging guidance system. The technology of infrared small target detection still needs to be further studied to improve the detection performance. This paper combines the high-pass filtering characteristics of morphological top-hat transform with SUSAN algorithm, and proposes a small infrared target detection method based on morphology and SUSAN algorithm. This method uses top-hat transform to detect the high-frequency region in infrared image, and filters out the low-frequency region in the image to implement the preliminary background suppression of infrared image. Then the SUSAN algorithm is used to detect small targets in the image after background suppression. The proposed method is applied to the single infrared image which is acquired by the infrared guidance system in the process of detecting and tracking the target under specific conditions. The experimental results show that the method is effective and can detect infrared small targets under different background.


Author(s):  
ZHEN-XUE CHEN ◽  
CHENG-YUN LIU ◽  
FA-LIANG CHANG

It is an important and challenging problem to detect small targets in clutter scene and low SNR (Signal Noise Ratio) in infrared (IR) images. In order to solve this problem, a method based on feature salience is proposed for automatic detection of targets in complex background. Firstly, in this paper, the method utilizes the average absolute difference maximum (AADM) as the dissimilarity measurement between targets and background region to enhance targets. Secondly, minimum probability of error was used to build the model of feature salience. Finally, by computing the realistic degree of features, this method solves the problem of multi-feather fusion. Experimental results show that the algorithm proposed shows better performance with respect to the probability of detection. It is an effective and valuable small target detection algorithm under a complex background.


Sign in / Sign up

Export Citation Format

Share Document