scholarly journals The Assessment of Landsat-8 OLI Atmospheric Correction Algorithms for Inland Waters

2019 ◽  
Vol 11 (2) ◽  
pp. 169 ◽  
Author(s):  
Dian Wang ◽  
Ronghua Ma ◽  
Kun Xue ◽  
Steven Loiselle

The OLI (Operational Land Imager) sensor on Landsat-8 has the potential to meet the requirements of remote sensing of water color. However, the optical properties of inland waters are more complex than those of oceanic waters, and inland atmospheric correction presents additional challenges. We examined the performance of atmospheric correction (AC) methods for remote sensing over three highly turbid or hypereutrophic inland waters in China: Lake Hongze, Lake Chaohu, and Lake Taihu. Four water-AC algorithms (SWIR (Short Wave Infrared), EXP (Exponential Extrapolation), DSF (Dark Spectrum Fitting), and MUMM (Management Unit Mathematics Models)) and three land-AC algorithms (FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes), 6SV (a version of Second Simulation of the Satellite Signal in the Solar Spectrum), and QUAC (Quick Atmospheric Correction)) were assessed using Landsat-8 OLI data and concurrent in situ data. The results showed that the EXP (and DSF) together with 6SV algorithms provided the best estimates of the remote sensing reflectance (Rrs) and band ratios in water-AC algorithms and land-AC algorithms, respectively. AC algorithms showed a discriminating accuracy for different water types (turbid waters, in-water algae waters, and floating bloom waters). For turbid waters, EXP gave the best Rrs in visible bands. For the in-water algae and floating bloom waters, however, all water-algorithms failed due to an inappropriate aerosol model and non-zero reflectance at 1609 nm. The results of the study show the improvements that can be achieved considering SWIR bands and using band ratios, and the need for further development of AC algorithms for complex aquatic and atmospheric conditions, typical of inland waters.

2021 ◽  
Vol 14 (1) ◽  
pp. 83
Author(s):  
Xiaocheng Zhou ◽  
Xueping Liu ◽  
Xiaoqin Wang ◽  
Guojin He ◽  
Youshui Zhang ◽  
...  

Surface reflectance (SR) estimation is the most essential preprocessing step for multi-sensor remote sensing inversion of geophysical parameters. Therefore, accurate and stable atmospheric correction is particularly important, which is the premise and basis of the quantitative application of remote sensing. It can also be used to directly compare different images and sensors. The Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi-Spectral Instrument (MSI) surface reflectance products are publicly available and demonstrate high accuracy. However, there is not enough validation using synchronous spectral measurements over China’s land surface. In this study, we utilized Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric products reconstructed by Categorical Boosting (CatBoost) and 30 m ASTER Global Digital Elevation Model (ASTER GDEM) data to adjust the relevant parameters to optimize the Second Simulation of Satellite Signal in the Solar Spectrum (6S) model. The accuracy of surface reflectance products obtained from the optimized 6S model was compared with that of the original 6S model and the most commonly used Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) model. Surface reflectance products were validated and evaluated with synchronous in situ measurements from 16 sites located in five provinces of China: Fujian, Gansu, Jiangxi, Hunan, and Guangdong. Through the indirect and direct validation across two sensors and three methods, it provides evidence that the synchronous measurements have the higher and more reliable validation accuracy. The results of the validation indicated that, for Landsat-8 OLI and Sentinel-2 MSI SR products, the overall root mean square error (RMSE) calculated results of optimized 6S, original 6S and FLAASH across all spectral bands were 0.0295, 0.0378, 0.0345, and 0.0313, 0.0450, 0.0380, respectively. R2 values reached 0.9513, 0.9254, 0.9316 and 0.9377, 0.8822, 0.9122 respectively. Compared with the original 6S model and FLAASH model, the mean percent absolute error (MPAE) of the optimized 6S model was reduced by 32.20% and 15.86% for Landsat-8 OLI, respectively. On the other, for the Sentinel-2 MSI SR product, the MPAE value was reduced by 33.56% and 33.32%. For the two kinds of data, the accuracy of each band was improved to varying extents by the optimized 6S model with the auxiliary data. These findings support the hypothesis that reliable auxiliary data are helpful in reducing the influence of the atmosphere on images and restoring reality as much as is feasible.


2018 ◽  
Vol 215 ◽  
pp. 18-32 ◽  
Author(s):  
Jianwei Wei ◽  
Zhongping Lee ◽  
Rodrigo Garcia ◽  
Laura Zoffoli ◽  
Roy A. Armstrong ◽  
...  

2019 ◽  
Vol 27 (22) ◽  
pp. 31676 ◽  
Author(s):  
Dat Dinh Ngoc ◽  
Hubert Loisel ◽  
Lucile Duforêt-Gaurier ◽  
Cedric Jamet ◽  
Vincent Vantrepotte ◽  
...  

2019 ◽  
Vol 11 (4) ◽  
pp. 469 ◽  
Author(s):  
Christopher Ilori ◽  
Nima Pahlevan ◽  
Anders Knudby

Ocean colour (OC) remote sensing is important for monitoring marine ecosystems. However, inverting the OC signal from the top-of-atmosphere (TOA) radiance measured by satellite sensors remains a challenge as the retrieval accuracy is highly dependent on the performance of the atmospheric correction as well as sensor calibration. In this study, the performances of four atmospheric correction (AC) algorithms, the Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI), Atmospheric Correction for OLI ‘lite’ (ACOLITE), Landsat 8 Surface Reflectance (LSR) Climate Data Record (Landsat CDR), herein referred to as LaSRC (Landsat 8 Surface Reflectance Code), and the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) Data Analysis System (SeaDAS), implemented for Landsat 8 Operational Land Imager (OLI) data, were evaluated. The OLI-derived remote sensing reflectance (Rrs) products (also known as Level-2 products) were tested against near-simultaneous in-situ data acquired from the OC component of the Aerosol Robotic Network (AERONET-OC). Analyses of the match-ups revealed that generic atmospheric correction methods (i.e., ARCSI and LaSRC), which perform reasonably well over land, provide inaccurate Level-2 products over coastal waters, in particular, in the blue bands. Between water-specific AC methods (i.e., SeaDAS and ACOLITE), SeaDAS was found to perform better over complex waters with root-mean-square error (RMSE) varying from 0.0013 to 0.0005 sr−1 for the 443 and 655 nm channels, respectively. An assessment of the effects of dominant environmental variables revealed AC retrieval errors were influenced by the solar zenith angle and wind speed for ACOLITE and SeaDAS in the 443 and 482 nm channels. Recognizing that the AERONET-OC sites are not representative of inland waters, extensive research and analyses are required to further evaluate the performance of various AC methods for high-resolution imagers like Landsat 8 and Sentinel-2 under a broad range of aquatic/atmospheric conditions.


2018 ◽  
Vol 51 (1) ◽  
pp. 525-542 ◽  
Author(s):  
L. De Keukelaere ◽  
S. Sterckx ◽  
S. Adriaensen ◽  
E. Knaeps ◽  
I. Reusen ◽  
...  

2018 ◽  
Vol 39 (21) ◽  
pp. 7463-7482
Author(s):  
Venkata Vijay Arun Kumar Surisetty ◽  
Arvind Sahay ◽  
Ratheesh Ramakrishnan ◽  
Rabindro Nath Samal ◽  
Ajay Singh Rajawat

2020 ◽  
Vol 12 (16) ◽  
pp. 2587
Author(s):  
Yan Nie ◽  
Ying Tan ◽  
Yuqin Deng ◽  
Jing Yu

As a basic agricultural parameter in the formation, transformation, and consumption of surface water resources, soil moisture has a very important influence on the vegetation growth, agricultural production, and healthy operation of regional ecosystems. The Aksu river basin is a typical semi-arid agricultural area which seasonally suffers from water shortage. Due to the lack of knowledge on soil moisture change, the water management and decision-making processes have been a difficult issue for local government. Therefore, soil moisture monitoring by remote sensing became a reasonable way to schedule crop irrigation and evaluate the irrigation efficiency. Compared to in situ measurements, the use of remote sensing for the monitoring of soil water content is convenient and can be repetitively applied over a large area. To verify the applicability of the typical drought index to the rapid acquisition of soil moisture in arid and semi-arid regions, this study simulated, compared, and validated the effectiveness of soil moisture inversion. GF-1 WFV images, Landsat 8 OLI images, and the measured soil moisture data were used to determine the Perpendicular Drought Index (PDI), the Modified Perpendicular Drought Index (MPDI), and the Vegetation Adjusted Perpendicular Drought Index (VAPDI). First, the determination coefficients of the correlation analyses on the PDI, MPDI, VAPDI, and measured soil moisture in the 0–10, 10–20, and 20–30 cm depth layers based on the GF-1 WFV and Landsat 8 OLI images were good. Notably, in the 0–10 cm depth layers, the average determination coefficient was 0.68; all models met the accuracy requirements of soil moisture inversion. Both indicated that the drought indices based on the Near Infrared (NIR)-Red spectral space derived from the optical remote sensing images are more sensitive to soil moisture near the surface layer; however, the accuracy of retrieving the soil moisture in deep layers was slightly lower in the study area. Second, in areas of vegetation coverage, MPDI and VAPDI had a higher inversion accuracy than PDI. To a certain extent, they overcame the influence of mixed pixels on the soil moisture spectral information. VAPDI modified by Perpendicular Vegetation Index (PVI) was not susceptible to vegetation saturation and, thus, had a higher inversion accuracy, which makes it performs better than MPDI’s in vegetated areas. Third, the spatial heterogeneity of the soil moisture retrieved by the GF-1 WFV and Landsat 8 OLI image were similar. However, the GF-1 WFV images were more sensitive to changes in the soil moisture, which reflected the actual soil moisture level covered by different vegetation. These results provide a practical reference for the dynamic monitoring of surface soil moisture, obtaining agricultural information and agricultural condition parameters in arid and semi-arid regions.


Sign in / Sign up

Export Citation Format

Share Document