scholarly journals Change Detection of High Spatial Resolution Images Based on Region-Line Primitive Association Analysis and Evidence Fusion

2019 ◽  
Vol 11 (21) ◽  
pp. 2484 ◽  
Author(s):  
Huang ◽  
Liu ◽  
Wang ◽  
Zheng ◽  
Wang ◽  
...  

Change detection (CD) remains an important issue in remote sensing applications, especially for high spatial resolution (HSR) images, but it has yet to be fully resolved. This work proposes a novel object-based change detection (OBCD) method for HSR images that is based on region–line primitive association analysis and evidence fusion. In the proposed method, bitemporal images are separately segmented, and the segmentation results are overlapped to obtain the temporal region primitives (TRPs). The temporal line primitives (TLPs) are obtained by straight line detection on bitemporal images. In the initial CD stage, Dempster–Shafer evidence theory fuses the multiple items of evidence of the TRPs’ spectrum, edge, and gradient changes, and obtains the initial changed areas. In the refining CD stage, the association between the TRPs and their contacting TLPs in the unchanged areas is established on the basis of the region–line primitive association framework, and the TRPs’ main line directions (MLDs) are calculated. Some changed TRPs omitted in the initial CD stage are recovered by their MLD changes, thereby refining the initial CD results. Different from common OBCD methods, the proposed method considers the change evidence of TRPs’ internal and boundary information simultaneously via information complementation between TRPs and TLPs. The proposed method can significantly reduce missed alarms while maintaining a low level of false alarms in OBCD, thereby improving total accuracy. In our experiments, our method is superior to common CD methods, including change vector analysis (CVA), PCA-k-means, and iterative reweighted multivariate alteration detection (IRMAD), in terms of overall accuracy, missed alarms, and Kappa coefficient.

2020 ◽  
Vol 12 (1) ◽  
pp. 174
Author(s):  
Tianjun Wu ◽  
Jiancheng Luo ◽  
Ya’nan Zhou ◽  
Changpeng Wang ◽  
Jiangbo Xi ◽  
...  

Land cover (LC) information plays an important role in different geoscience applications such as land resources and ecological environment monitoring. Enhancing the automation degree of LC classification and updating at a fine scale by remote sensing has become a key problem, as the capability of remote sensing data acquisition is constantly being improved in terms of spatial and temporal resolution. However, the present methods of generating LC information are relatively inefficient, in terms of manually selecting training samples among multitemporal observations, which is becoming the bottleneck of application-oriented LC mapping. Thus, the objectives of this study are to speed up the efficiency of LC information acquisition and update. This study proposes a rapid LC map updating approach at a geo-object scale for high-spatial-resolution (HSR) remote sensing. The challenge is to develop methodologies for quickly sampling. Hence, the core step of our proposed methodology is an automatic method of collecting samples from historical LC maps through combining change detection and label transfer. A data set with Chinese Gaofen-2 (GF-2) HSR satellite images is utilized to evaluate the effectiveness of our method for multitemporal updating of LC maps. Prior labels in a historical LC map are certified to be effective in a LC updating task, which contributes to improve the effectiveness of the LC map update by automatically generating a number of training samples for supervised classification. The experimental outcomes demonstrate that the proposed method enhances the automation degree of LC map updating and allows for geo-object-based up-to-date LC mapping with high accuracy. The results indicate that the proposed method boosts the ability of automatic update of LC map, and greatly reduces the complexity of visual sample acquisition. Furthermore, the accuracy of LC type and the fineness of polygon boundaries in the updated LC maps effectively reflect the characteristics of geo-object changes on the ground surface, which makes the proposed method suitable for many applications requiring refined LC maps.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Liang Huang ◽  
Qiuzhi Peng ◽  
Xueqin Yu

In order to improve the change detection accuracy of multitemporal high spatial resolution remote-sensing (HSRRS) images, a change detection method of multitemporal remote-sensing images based on saliency detection and spatial intuitionistic fuzzy C-means (SIFCM) clustering is proposed. Firstly, the cluster-based saliency cue method is used to obtain the saliency maps of two temporal remote-sensing images; then, the saliency difference is obtained by subtracting the saliency maps of two temporal remote-sensing images; finally, the SIFCM clustering algorithm is used to classify the saliency difference image to obtain the change regions and unchange regions. Two data sets of multitemporal high spatial resolution remote-sensing images are selected as the experimental data. The detection accuracy of the proposed method is 96.17% and 97.89%. The results show that the proposed method is a feasible and better performance multitemporal remote-sensing image change detection method.


Sign in / Sign up

Export Citation Format

Share Document