scholarly journals Geometric Accuracy Improvement Method for High-Resolution Optical Satellite Remote Sensing Imagery Combining Multi-Temporal SAR Imagery and GLAS Data

2020 ◽  
Vol 12 (3) ◽  
pp. 568
Author(s):  
Quansheng Zhu ◽  
Wanshou Jiang ◽  
Ying Zhu ◽  
Linze Li

With the widespread availability of satellite data, a single region can be described using multi-source and multi-temporal remote sensing data, such as high-resolution (HR) optical imagery, synthetic aperture radar (SAR) imagery, and space-borne laser altimetry data. These have become the main source of data for geopositioning. However, due to the limitation of the direct geometric accuracy of HR optical imagery and the effect of the small intersection angle of HR optical imagery in stereo pair orientation, the geometric accuracy of HR optical imagery cannot meet the requirements for geopositioning without ground control points (GCPs), especially in uninhabited areas, such as forests, plateaus, or deserts. Without satellite attitude error, SAR usually provides higher geometric accuracy than optical satellites. Space-borne laser altimetry technology can collect global laser footprints with high altitude accuracy. Therefore, this paper presents a geometric accuracy improvement method for HR optical satellite remote sensing imagery combining multi-temporal SAR Imagery and GLAS data without GCPs. Based on the imaging mechanism, the differences in the weight matrix determination of the HR optical imagery and SAR imagery were analyzed. The laser altimetry data with high altitude accuracy were selected and applied as height control point in combined geopositioning. To validate the combined geopositioning approach, GaoFen2 (GF2) optical imagery, GaoFen6 (GF6) optical imagery, GaoFen3 (GF3) SAR imagery, and the Geoscience Laser Altimeter System (GLAS) footprint were tested. The experimental results show that the proposed model can be effectively applied to combined geopositioning to improve the geometric accuracy of HR optical imagery. Moreover, we found that the distribution and weight matrix determination of SAR images and the distribution of GLAS footprints are the crucial factors influencing geometric accuracy. Combined geopositioning using multi-source remote sensing data can achieve a plane accuracy of 1.587 m and an altitude accuracy of 1.985 m, which is similar to the geometric accuracy of geopositioning of GF2 with GCPs.

2019 ◽  
Vol 11 (20) ◽  
pp. 2405
Author(s):  
Matthew Cooper ◽  
Laurence Smith

The Greenland Ice Sheet is now the largest land ice contributor to global sea level rise, largely driven by increased surface meltwater runoff from the ablation zone, i.e., areas of the ice sheet where annual mass losses exceed gains. This small but critically important area of the ice sheet has expanded in size by ~50% since the early 1960s, and satellite remote sensing is a powerful tool for monitoring the physical processes that influence its surface mass balance. This review synthesizes key remote sensing methods and scientific findings from satellite remote sensing of the Greenland Ice Sheet ablation zone, covering progress in (1) radar altimetry, (2) laser (lidar) altimetry, (3) gravimetry, (4) multispectral optical imagery, and (5) microwave and thermal imagery. Physical characteristics and quantities examined include surface elevation change, gravimetric mass balance, reflectance, albedo, and mapping of surface melt extent and glaciological facies and zones. The review concludes that future progress will benefit most from methods that combine multi-sensor, multi-wavelength, and cross-platform datasets designed to discriminate the widely varying surface processes in the ablation zone. Specific examples include fusing laser altimetry, radar altimetry, and optical stereophotogrammetry to enhance spatial measurement density, cross-validate surface elevation change, and diagnose radar elevation bias; employing dual-frequency radar, microwave scatterometry, or combining radar and laser altimetry to map seasonal snow depth; fusing optical imagery, radar imagery, and microwave scatterometry to discriminate between snow, liquid water, refrozen meltwater, and bare ice near the equilibrium line altitude; combining optical reflectance with laser altimetry to map supraglacial lake, stream, and crevasse bathymetry; and monitoring the inland migration of snowlines, surface melt extent, and supraglacial hydrologic features.


2017 ◽  
Vol 198 ◽  
pp. 126-139 ◽  
Author(s):  
Marta Gómez Giménez ◽  
Rogier de Jong ◽  
Raniero Della Peruta ◽  
Armin Keller ◽  
Michael E. Schaepman

Author(s):  
Matthew G. Cooper ◽  
Laurence C. Smith

The Greenland Ice Sheet is now the largest land ice contributor to global sea level rise, largely driven by increased surface meltwater runoff from the ablation zone, i.e. areas of the ice sheet where annual mass losses exceed gains. This small but critically important area of the ice sheet has expanded in size by ~50% since the early 1960s, and satellite remote sensing is a powerful tool for monitoring the physical processes that influence its surface mass balance. This review synthesizes key remote sensing methods and scientific findings from satellite remote sensing of the Greenland Ice Sheet ablation zone, covering progress in 1) radar altimetry, 2) laser (lidar) altimetry, 3) gravimetry, 4) multispectral optical imagery and, 5) microwave and thermal imagery. Physical characteristics and quantities examined include surface elevation change, gravimetric mass balance, reflectance, albedo, and mapping of surface melt extent and glaciological facies and zones. The review concludes that future progress will benefit most from methods that combine multi-sensor, multi-wavelength, and cross-platform datasets designed to discriminate the widely varying surface processes in the ablation zone. Specific examples include fusing laser altimetry, radar altimetry, and optical stereophotogrammetry to enhance spatial measurement density, cross-validate surface elevation change, and diagnose radar elevation bias; fusing optical imagery, radar imagery, and microwave scatterometry to discriminate between snow, liquid water, refrozen meltwater, and bare ice near the equilibrium line altitude; combining optical reflectance with laser altimetry to map supraglacial lake, stream, and crevasse bathymetry; and monitoring the inland migration of snowlines, surface melt extent, and supraglacial hydrologic features.


Author(s):  
H. Lilienthal ◽  
A. Brauer ◽  
K. Betteridge ◽  
E. Schnug

Conversion of native vegetation into farmed grassland in the Lake Taupo catchment commenced in the late 1950s. The lake's iconic value is being threatened by the slow decline in lake water quality that has become apparent since the 1970s. Keywords: satellite remote sensing, nitrate leaching, land use change, livestock farming, land management


Sign in / Sign up

Export Citation Format

Share Document