Determination of grassland use intensity based on multi-temporal remote sensing data and ecological indicators

2017 ◽  
Vol 198 ◽  
pp. 126-139 ◽  
Author(s):  
Marta Gómez Giménez ◽  
Rogier de Jong ◽  
Raniero Della Peruta ◽  
Armin Keller ◽  
Michael E. Schaepman
2020 ◽  
Vol 12 (3) ◽  
pp. 568
Author(s):  
Quansheng Zhu ◽  
Wanshou Jiang ◽  
Ying Zhu ◽  
Linze Li

With the widespread availability of satellite data, a single region can be described using multi-source and multi-temporal remote sensing data, such as high-resolution (HR) optical imagery, synthetic aperture radar (SAR) imagery, and space-borne laser altimetry data. These have become the main source of data for geopositioning. However, due to the limitation of the direct geometric accuracy of HR optical imagery and the effect of the small intersection angle of HR optical imagery in stereo pair orientation, the geometric accuracy of HR optical imagery cannot meet the requirements for geopositioning without ground control points (GCPs), especially in uninhabited areas, such as forests, plateaus, or deserts. Without satellite attitude error, SAR usually provides higher geometric accuracy than optical satellites. Space-borne laser altimetry technology can collect global laser footprints with high altitude accuracy. Therefore, this paper presents a geometric accuracy improvement method for HR optical satellite remote sensing imagery combining multi-temporal SAR Imagery and GLAS data without GCPs. Based on the imaging mechanism, the differences in the weight matrix determination of the HR optical imagery and SAR imagery were analyzed. The laser altimetry data with high altitude accuracy were selected and applied as height control point in combined geopositioning. To validate the combined geopositioning approach, GaoFen2 (GF2) optical imagery, GaoFen6 (GF6) optical imagery, GaoFen3 (GF3) SAR imagery, and the Geoscience Laser Altimeter System (GLAS) footprint were tested. The experimental results show that the proposed model can be effectively applied to combined geopositioning to improve the geometric accuracy of HR optical imagery. Moreover, we found that the distribution and weight matrix determination of SAR images and the distribution of GLAS footprints are the crucial factors influencing geometric accuracy. Combined geopositioning using multi-source remote sensing data can achieve a plane accuracy of 1.587 m and an altitude accuracy of 1.985 m, which is similar to the geometric accuracy of geopositioning of GF2 with GCPs.


2020 ◽  
Vol 65 (14) ◽  
pp. 2402-2418
Author(s):  
Évelyn Márcia Pôssa ◽  
Philippe Maillard ◽  
Lília Maria de Oliveira

Sign in / Sign up

Export Citation Format

Share Document