scholarly journals Surface Water Quality Analysis Using CORINE Data: An Application to Assess Reservoirs in Poland

2020 ◽  
Vol 12 (6) ◽  
pp. 979 ◽  
Author(s):  
Magdalena Matysik ◽  
Damian Absalon ◽  
Michał Habel ◽  
Michael Maerker

Reservoirs are formed through the artificial damming of a river valley. Reservoirs, among others, capture polluted load transported by the tributaries in the form of suspended and dissolved sediments and substances. Therefore, reservoirs are treated in the European Union (EU) as “artificial” or “heavily modified” surface water bodies. The reservoirs’ pollutant load depends to a large extent on the degree of anthropogenic impact in the respective river catchment area. The purpose of this paper is to assess the mutual relation between the catchment area and the reservoirs. In particular, we focus on the effects of certain land use/land cover on reservoirs’ water quality. For this study, we selected twenty Polish reservoirs for an in-depth analysis using 2018 CORINE Land Cover data. This analysis allowed the identification of the main triggering factors in terms of water quality of the respective reservoirs. Moreover, our assessment clearly shows that water quality of the analysed dam reservoirs is directly affected by the composition of land use/land cover, both of the entire total reservoir catchment areas and the directly into the reservoir draining sub-catchment areas.

2020 ◽  
Vol 12 (11) ◽  
pp. 4692 ◽  
Author(s):  
Angela Gorgoglione ◽  
Javier Gregorio ◽  
Agustín Ríos ◽  
Jimena Alonso ◽  
Christian Chreties ◽  
...  

Land use/land cover is one of the critical factors that affects surface-water quality at catchment scale. Effective mitigation strategies require an in-depth understanding of the leading causes of water pollution to improve community well-being and ecosystem health. The main aim of this study is to assess the relationship between land use/land cover and biophysical and chemical water-quality parameters in the Santa Lucía catchment (Uruguay, South America). The Santa Lucía river is the primary potable source of the country and, in the last few years, has had eutrophication issues. Several multivariate statistical analyses were adopted to accomplish the specific objectives of this study. The principal component analysis (PCA), coupled with k-means cluster analysis (CA), helped to identify a seasonal variation (fall/winter and spring/summer) of the water quality. The hierarchical cluster analysis (HCA) allowed one to classify the water-quality monitoring stations in three groups in the fall/winter season. The factor analysis (FA) with a rotation of the axis (varimax) was adopted to identify the most significant water-quality variables of the system (turbidity and flow). Finally, another PCA was run to link water-quality variables to the dominant land uses of the watershed. Strong correlations between TP and agriculture-land use, TP and livestock farming, NT and urban areas arose. It was found that these multivariate exploratory tools can provide a proper overview of the water-quality behavior in space and time and the correlations between water-quality variables and land use.


2021 ◽  
Vol 14 (1) ◽  
pp. 372
Author(s):  
John Peter Obubu ◽  
Seyoum Mengistou ◽  
Robinson Odong ◽  
Tadesse Fetahi ◽  
Tena Alamirew

Catchments for aquatic ecosystems connect to the water quality of those waterbodies. Land use land cover change activities in the catchments, therefore, play a significant role in determining the water quality of the waterbodies. Research on the relationship between land use and land cover changes and water quality has gained global prominence. Therefore, this study aimed at determining land use, land cover changes in the catchments of L. Kyoga basin, and assessing their connectedness to the lake’s water quality. The GIS software was used to determine eight major land use and land cover changes for 2000, 2010, and 2020. Meanwhile, water quality data was obtained through both secondary and primary sources. Spearman correlation statistical tool in SPSS was used to correlate the land use, land cover changes, and water quality changes over the two-decade study period. The results showed that different land use and land cover activities strongly correlated with particular water quality parameters. For example, agriculture correlated strongly with nutrients like TP, TN, and nitrates and turbidity, TSS, BOD, and temp. The correlation with nitrates was statistically significant at 0.01 confidence limit. The findings of this study agreed with what other authors had found in different parts of the world. The results show that to manage the water quality of L. Kyoga, management of land use, land cover activities in the catchment should be prioritized. Therefore, the results are helpful to decision and policy makers and relevant stakeholders responsible for water management.


Sign in / Sign up

Export Citation Format

Share Document