Relationship of Land-Use/Land-Cover Patterns and Surface-Water Quality in The Mullica River Basin

Author(s):  
Robert A. Zampella ◽  
Nicholas A. Procopio ◽  
Richard G. Lathrop ◽  
Charles L. Dow
2020 ◽  
Vol 12 (11) ◽  
pp. 4692 ◽  
Author(s):  
Angela Gorgoglione ◽  
Javier Gregorio ◽  
Agustín Ríos ◽  
Jimena Alonso ◽  
Christian Chreties ◽  
...  

Land use/land cover is one of the critical factors that affects surface-water quality at catchment scale. Effective mitigation strategies require an in-depth understanding of the leading causes of water pollution to improve community well-being and ecosystem health. The main aim of this study is to assess the relationship between land use/land cover and biophysical and chemical water-quality parameters in the Santa Lucía catchment (Uruguay, South America). The Santa Lucía river is the primary potable source of the country and, in the last few years, has had eutrophication issues. Several multivariate statistical analyses were adopted to accomplish the specific objectives of this study. The principal component analysis (PCA), coupled with k-means cluster analysis (CA), helped to identify a seasonal variation (fall/winter and spring/summer) of the water quality. The hierarchical cluster analysis (HCA) allowed one to classify the water-quality monitoring stations in three groups in the fall/winter season. The factor analysis (FA) with a rotation of the axis (varimax) was adopted to identify the most significant water-quality variables of the system (turbidity and flow). Finally, another PCA was run to link water-quality variables to the dominant land uses of the watershed. Strong correlations between TP and agriculture-land use, TP and livestock farming, NT and urban areas arose. It was found that these multivariate exploratory tools can provide a proper overview of the water-quality behavior in space and time and the correlations between water-quality variables and land use.


2017 ◽  
Author(s):  
Anoop Kumar Shukla ◽  
Chandra Shekhar Prasad Ojha ◽  
Ana Mijic ◽  
Wouter Buytaert ◽  
Shray Pathak ◽  
...  

Abstract. For sustainable development in a river basin it is crucial to understand population growth–Land Use/Land Cover (LULC) transformations–water quality nexus. This study investigates effects of demographic changes and LULC transformations on surface water quality of Upper Ganga River basin. River gets polluted in both rural and urban area. In rural area, pollution is because of agricultural practices mainly fertilizers, whereas in urban area it is mainly because of domestic and industrial wastes. First, population data was analyzed statistically to study demographic changes in the river basin. LULC change detection was done over the period of February/March 2001 to 2012 [Landsat 7 Enhanced Thematic Mapper (ETM+) data] using remote sensing and Geographical Information System (GIS) techniques. Further, water quality parameters viz. Biological Oxygen Demand (BOD), Dissolve Oxygen (DO) %, Flouride (F), Hardness CaCO3, pH, Total Coliform bacteria and Turbidity were studied in basin for pre-monsoon (May), monsoon (July) and Post-monsoon (November) seasons. Non-parametric Mann–Kendall rank test was done on monthly water quality data to study existing trends. Further, Overall Index of Pollution (OIP) developed specifically for Upper Ganga River basin was used for spatio-temporal water quality assessment. From the results, it was observed that population has increased in the river basin. Therefore, significant and characteristic LULC changes are observed in the study area. Water quality degradation has occurred in the river basin consequently the health status of the rivers have also changed from range of acceptable to slightly polluted in urban areas.


2020 ◽  
Vol 12 (6) ◽  
pp. 979 ◽  
Author(s):  
Magdalena Matysik ◽  
Damian Absalon ◽  
Michał Habel ◽  
Michael Maerker

Reservoirs are formed through the artificial damming of a river valley. Reservoirs, among others, capture polluted load transported by the tributaries in the form of suspended and dissolved sediments and substances. Therefore, reservoirs are treated in the European Union (EU) as “artificial” or “heavily modified” surface water bodies. The reservoirs’ pollutant load depends to a large extent on the degree of anthropogenic impact in the respective river catchment area. The purpose of this paper is to assess the mutual relation between the catchment area and the reservoirs. In particular, we focus on the effects of certain land use/land cover on reservoirs’ water quality. For this study, we selected twenty Polish reservoirs for an in-depth analysis using 2018 CORINE Land Cover data. This analysis allowed the identification of the main triggering factors in terms of water quality of the respective reservoirs. Moreover, our assessment clearly shows that water quality of the analysed dam reservoirs is directly affected by the composition of land use/land cover, both of the entire total reservoir catchment areas and the directly into the reservoir draining sub-catchment areas.


Sign in / Sign up

Export Citation Format

Share Document