Land Use–Land Cover Changes and Sewage Loading in the Lower Eastern Shore Watersheds and Coastal Bays of Maryland: Implications for Surface Water Quality

2013 ◽  
Vol 290 ◽  
pp. 1073-1082 ◽  
Author(s):  
Isoken Tito Aighewi ◽  
Osarodion Kingsley Nosakhare ◽  
Ali B. Ishaque
2020 ◽  
Vol 12 (11) ◽  
pp. 4692 ◽  
Author(s):  
Angela Gorgoglione ◽  
Javier Gregorio ◽  
Agustín Ríos ◽  
Jimena Alonso ◽  
Christian Chreties ◽  
...  

Land use/land cover is one of the critical factors that affects surface-water quality at catchment scale. Effective mitigation strategies require an in-depth understanding of the leading causes of water pollution to improve community well-being and ecosystem health. The main aim of this study is to assess the relationship between land use/land cover and biophysical and chemical water-quality parameters in the Santa Lucía catchment (Uruguay, South America). The Santa Lucía river is the primary potable source of the country and, in the last few years, has had eutrophication issues. Several multivariate statistical analyses were adopted to accomplish the specific objectives of this study. The principal component analysis (PCA), coupled with k-means cluster analysis (CA), helped to identify a seasonal variation (fall/winter and spring/summer) of the water quality. The hierarchical cluster analysis (HCA) allowed one to classify the water-quality monitoring stations in three groups in the fall/winter season. The factor analysis (FA) with a rotation of the axis (varimax) was adopted to identify the most significant water-quality variables of the system (turbidity and flow). Finally, another PCA was run to link water-quality variables to the dominant land uses of the watershed. Strong correlations between TP and agriculture-land use, TP and livestock farming, NT and urban areas arose. It was found that these multivariate exploratory tools can provide a proper overview of the water-quality behavior in space and time and the correlations between water-quality variables and land use.


2012 ◽  
Vol 278 ◽  
pp. 54-62 ◽  
Author(s):  
Osarodion K. Nosakhare ◽  
Isoken T. Aighewi ◽  
Albert Y. Chi ◽  
Ali B. Ishaque ◽  
Godwin Mbamalu

2021 ◽  
Author(s):  
Nde Samuel Che ◽  
Sammy Bett ◽  
Enyioma Chimaijem Okpara ◽  
Peter Oluwadamilare Olagbaju ◽  
Omolola Esther Fayemi ◽  
...  

The degradation of surface water by anthropogenic activities is a global phenomenon. Surface water in the upper Crocodile River has been deteriorating over the past few decades by increased anthropogenic land use and land cover changes as areas of non-point sources of contamination. This study aimed to assess the spatial variation of physicochemical parameters and potentially toxic elements (PTEs) contamination in the Crocodile River influenced by land use and land cover change. 12 surface water samplings were collected every quarter from April 2017 to July 2018 and were analyzed by inductive coupled plasma spectrometry-mass spectrometry (ICP-MS). Landsat and Spot images for the period of 1999–2009 - 2018 were used for land use and land cover change detection for the upper Crocodile River catchment. Supervised approach with maximum likelihood classifier was used for the classification and generation of LULC maps for the selected periods. The results of the surface water concentrations of PTEs in the river are presented in order of abundance from Mn in October 2017 (0.34 mg/L), followed by Cu in July 2017 (0,21 mg/L), Fe in April 2017 (0,07 mg/L), Al in July 2017 (0.07 mg/L), while Zn in April 2017, October 2017 and April 2018 (0.05 mg/L). The concentrations of PTEs from water analysis reveal that Al, (0.04 mg/L), Mn (0.19 mg/L) and Fe (0.14 mg/L) exceeded the stipulated permissible threshold limit of DWAF (< 0.005 mg/L, 0.18 mg/L and 0.1 mg/L) respectively for aquatic environments. The values for Mn (0.19 mg/L) exceeded the permissible threshold limit of the US-EPA of 0.05 compromising the water quality trait expected to be good. Seasonal analysis of the PTEs concentrations in the river was significant (p > 0.05) between the wet season and the dry season. The spatial distribution of physicochemical parameters and PTEs were strongly correlated (p > 0.05) being influenced by different land use type along the river. Analysis of change detection suggests that; grassland, cropland and water bodies exhibited an increase of 26 612, 17 578 and 1 411 ha respectively, with land cover change of 23.42%, 15.05% and 1.18% respectively spanning from 1999 to 2018. Bare land and built-up declined from 1999 to 2018, with a net change of - 42 938 and − 2 663 ha respectively witnessing a land cover change of −36.81% and − 2.29% respectively from 1999 to 2018. In terms of the area under each land use and land cover change category observed within the chosen period, most significant annual change was observed in cropland (2.2%) between 1999 to 2009. Water bodies also increased by 0.1% between 1999 to 2009 and 2009 to 2018 respectively. Built-up and grassland witness an annual change rate in land use and land cover change category only between 2009 to 2018 of 0.1% and 2.7% respectively. This underscores a massive transformation driven by anthropogenic activities given rise to environmental issues in the Crocodile River catchment.


2020 ◽  
Vol 12 (6) ◽  
pp. 979 ◽  
Author(s):  
Magdalena Matysik ◽  
Damian Absalon ◽  
Michał Habel ◽  
Michael Maerker

Reservoirs are formed through the artificial damming of a river valley. Reservoirs, among others, capture polluted load transported by the tributaries in the form of suspended and dissolved sediments and substances. Therefore, reservoirs are treated in the European Union (EU) as “artificial” or “heavily modified” surface water bodies. The reservoirs’ pollutant load depends to a large extent on the degree of anthropogenic impact in the respective river catchment area. The purpose of this paper is to assess the mutual relation between the catchment area and the reservoirs. In particular, we focus on the effects of certain land use/land cover on reservoirs’ water quality. For this study, we selected twenty Polish reservoirs for an in-depth analysis using 2018 CORINE Land Cover data. This analysis allowed the identification of the main triggering factors in terms of water quality of the respective reservoirs. Moreover, our assessment clearly shows that water quality of the analysed dam reservoirs is directly affected by the composition of land use/land cover, both of the entire total reservoir catchment areas and the directly into the reservoir draining sub-catchment areas.


2015 ◽  
Vol 74 (6) ◽  
pp. 5373-5382 ◽  
Author(s):  
Maria Lúcia Calijuri ◽  
Jackeline de Siqueira Castro ◽  
Luma Soares Costa ◽  
Paula Peixoto Assemany ◽  
José Ernesto Mattos Alves

Sign in / Sign up

Export Citation Format

Share Document