scholarly journals A Comparison of Low-Cost Sensor Systems in Automatic Cloud-Based Indoor 3D Modeling

2020 ◽  
Vol 12 (16) ◽  
pp. 2624 ◽  
Author(s):  
Matias Ingman ◽  
Juho-Pekka Virtanen ◽  
Matti T. Vaaja ◽  
Hannu Hyyppä

The automated 3D modeling of indoor spaces is a rapidly advancing field, in which recent developments have made the modeling process more accessible to consumers by lowering the cost of instruments and offering a highly automated service for 3D model creation. We compared the performance of three low-cost sensor systems; one RGB-D camera, one low-end terrestrial laser scanner (TLS), and one panoramic camera, using a cloud-based processing service to automatically create mesh models and point clouds, evaluating the accuracy of the results against a reference point cloud from a higher-end TLS. While adequately accurate results could be obtained with all three sensor systems, the TLS performed the best both in terms of reconstructing the overall room geometry and smaller details, with the panoramic camera clearly trailing the other systems and the RGB-D offering a middle ground in terms of both cost and quality. The results demonstrate the attractiveness of fully automatic cloud-based indoor 3D modeling for low-cost sensor systems, with the latter providing better model accuracy and completeness, and with all systems offering a rapid rate of data acquisition through an easy-to-use interface.

Author(s):  
J. Chen ◽  
O. E. Mora ◽  
K. C. Clarke

<p><strong>Abstract.</strong> In recent years, growing public interest in three-dimensional technology has led to the emergence of affordable platforms that can capture 3D scenes for use in a wide range of consumer applications. These platforms are often widely available, inexpensive, and can potentially find dual use in taking measurements of indoor spaces for creating indoor maps. Their affordability, however, usually comes at the cost of reduced accuracy and precision, which becomes more apparent when these instruments are pushed to their limits to scan an entire room. The point cloud measurements they produce often exhibit systematic drift and random noise that can make performing comparisons with accurate data difficult, akin to trying to compare a fuzzy trapezoid to a perfect square with sharp edges. This paper outlines a process for assessing the accuracy and precision of these imperfect point clouds in the context of indoor mapping by integrating techniques such as the extended Gaussian image, iterative closest point registration, and histogram thresholding. A case study is provided at the end to demonstrate use of this process for evaluating the performance of the Scanse Sweep 3D, an ultra-low cost panoramic laser scanner.</p>


2020 ◽  
Vol 9 (12) ◽  
pp. 743
Author(s):  
Arnadi Murtiyoso ◽  
Mirza Veriandi ◽  
Deni Suwardhi ◽  
Budhy Soeksmantono ◽  
Agung Budi Harto

Developments in UAV sensors and platforms in recent decades have stimulated an upsurge in its application for 3D mapping. The relatively low-cost nature of UAVs combined with the use of revolutionary photogrammetric algorithms, such as dense image matching, has made it a strong competitor to aerial lidar mapping. However, in the context of 3D city mapping, further 3D modeling is required to generate 3D city models which is often performed manually using, e.g., photogrammetric stereoplotting. The aim of the paper was to try to implement an algorithmic approach to building point cloud segmentation, from which an automated workflow for the generation of roof planes will also be presented. 3D models of buildings are then created using the roofs’ planes as a base, therefore satisfying the requirements for a Level of Detail (LoD) 2 in the CityGML paradigm. Consequently, the paper attempts to create an automated workflow starting from UAV-derived point clouds to LoD 2-compatible 3D model. Results show that the rule-based segmentation approach presented in this paper works well with the additional advantage of instance segmentation and automatic semantic attribute annotation, while the 3D modeling algorithm performs well for low to medium complexity roofs. The proposed workflow can therefore be implemented for simple roofs with a relatively low number of planar surfaces. Furthermore, the automated approach to the 3D modeling process also helps to maintain the geometric requirements of CityGML such as 3D polygon coplanarity vis-à-vis manual stereoplotting.


Author(s):  
M. Kedzierski ◽  
D. Wierzbickia ◽  
A. Fryskowska ◽  
B. Chlebowska

The laser scanning technique is still a very popular and fast growing method of obtaining information on modeling 3D objects. The use of low-cost miniature scanners creates new opportunities for small objects of 3D modeling based on point clouds acquired from the scan. The same, the development of accuracy and methods of automatic processing of this data type is noticeable. The article presents methods of collecting raw datasets in the form of a point-cloud using a low-cost ground-based laser scanner FabScan. As part of the research work 3D scanner from an open source FabLab project was constructed. In addition, the results for the analysis of the geometry of the point clouds obtained by using a low-cost laser scanner were presented. Also, some analysis of collecting data of different structures (made of various materials such as: glass, wood, paper, gum, plastic, plaster, ceramics, stoneware clay etc. and of different shapes: oval and similar to oval and prism shaped) have been done. The article presents two methods used for analysis: the first one - visual (general comparison between the 3D model and the real object) and the second one - comparative method (comparison between measurements on models and scanned objects using the mean error of a single sample of observations). The analysis showed, that the low-budget ground-based laser scanner FabScan has difficulties with collecting data of non-oval objects. Items built of glass painted black also caused problems for the scanner. In addition, the more details scanned object contains, the lower the accuracy of the collected point-cloud is. Nevertheless, the accuracy of collected data (using oval-straight shaped objects) is satisfactory. The accuracy, in this case, fluctuates between ± 0,4 mm and ± 1,0 mm whereas when using more detailed objects or a rectangular shaped prism the accuracy is much more lower, between 2,9 mm and ± 9,0 mm. Finally, the publication presents the possibility (for the future expansion of research) of modernization FabScan by the implementation of a larger amount of camera-laser units. This will enable spots the registration , that are less visible.


Author(s):  
M. Kedzierski ◽  
D. Wierzbickia ◽  
A. Fryskowska ◽  
B. Chlebowska

The laser scanning technique is still a very popular and fast growing method of obtaining information on modeling 3D objects. The use of low-cost miniature scanners creates new opportunities for small objects of 3D modeling based on point clouds acquired from the scan. The same, the development of accuracy and methods of automatic processing of this data type is noticeable. The article presents methods of collecting raw datasets in the form of a point-cloud using a low-cost ground-based laser scanner FabScan. As part of the research work 3D scanner from an open source FabLab project was constructed. In addition, the results for the analysis of the geometry of the point clouds obtained by using a low-cost laser scanner were presented. Also, some analysis of collecting data of different structures (made of various materials such as: glass, wood, paper, gum, plastic, plaster, ceramics, stoneware clay etc. and of different shapes: oval and similar to oval and prism shaped) have been done. The article presents two methods used for analysis: the first one - visual (general comparison between the 3D model and the real object) and the second one - comparative method (comparison between measurements on models and scanned objects using the mean error of a single sample of observations). The analysis showed, that the low-budget ground-based laser scanner FabScan has difficulties with collecting data of non-oval objects. Items built of glass painted black also caused problems for the scanner. In addition, the more details scanned object contains, the lower the accuracy of the collected point-cloud is. Nevertheless, the accuracy of collected data (using oval-straight shaped objects) is satisfactory. The accuracy, in this case, fluctuates between ± 0,4 mm and ± 1,0 mm whereas when using more detailed objects or a rectangular shaped prism the accuracy is much more lower, between 2,9 mm and ± 9,0 mm. Finally, the publication presents the possibility (for the future expansion of research) of modernization FabScan by the implementation of a larger amount of camera-laser units. This will enable spots the registration , that are less visible.


2018 ◽  
Vol 10 (11) ◽  
pp. 1754 ◽  
Author(s):  
Shayan Nikoohemat ◽  
Michael Peter ◽  
Sander Oude Elberink ◽  
George Vosselman

The data acquisition with Indoor Mobile Laser Scanners (IMLS) is quick, low-cost and accurate for indoor 3D modeling. Besides a point cloud, an IMLS also provides the trajectory of the mobile scanner. We analyze this trajectory jointly with the point cloud to support the labeling of noisy, highly reflected and cluttered points in indoor scenes. An adjacency-graph-based method is presented for detecting and labeling of permanent structures, such as walls, floors, ceilings, and stairs. Through occlusion reasoning and the use of the trajectory as a set of scanner positions, gaps are discriminated from real openings in the data. Furthermore, a voxel-based method is applied for labeling of navigable space and separating them from obstacles. The results show that 80% of the doors and 85% of the rooms are correctly detected, and most of the walls and openings are reconstructed. The experimental outcomes indicate that the trajectory of MLS systems plays an essential role in the understanding of indoor scenes.


2019 ◽  
Vol 93 (3) ◽  
pp. 411-429 ◽  
Author(s):  
Maria Immacolata Marzulli ◽  
Pasi Raumonen ◽  
Roberto Greco ◽  
Manuela Persia ◽  
Patrizia Tartarino

Abstract Methods for the three-dimensional (3D) reconstruction of forest trees have been suggested for data from active and passive sensors. Laser scanner technologies have become popular in the last few years, despite their high costs. Since the improvements in photogrammetric algorithms (e.g. structure from motion—SfM), photographs have become a new low-cost source of 3D point clouds. In this study, we use images captured by a smartphone camera to calculate dense point clouds of a forest plot using SfM. Eighteen point clouds were produced by changing the densification parameters (Image scale, Point density, Minimum number of matches) in order to investigate their influence on the quality of the point clouds produced. In order to estimate diameter at breast height (d.b.h.) and stem volumes, we developed an automatic method that extracts the stems from the point cloud and then models them with cylinders. The results show that Image scale is the most influential parameter in terms of identifying and extracting trees from the point clouds. The best performance with cylinder modelling from point clouds compared to field data had an RMSE of 1.9 cm and 0.094 m3, for d.b.h. and volume, respectively. Thus, for forest management and planning purposes, it is possible to use our photogrammetric and modelling methods to measure d.b.h., stem volume and possibly other forest inventory metrics, rapidly and without felling trees. The proposed methodology significantly reduces working time in the field, using ‘non-professional’ instruments and automating estimates of dendrometric parameters.


Author(s):  
V. V. Shcherbakov ◽  
M. A. Altyntsev ◽  
M. A. Altyntseva

Abstract. Rail track geometry measuring trolleys are widely used in the railway industry. They can collect information about the state of rails with high accuracy. Nowadays there are a lot of trolleys. Principles of measurements in different trolleys may vary greatly. The trolleys that can use the absolute method of measuring coordinates have advantages. Coordinates of rails and rail track axis can be used as control points for georeferencing of any other surveying data. UAV images are one of these data types. In railways aerial survey using UAVs is mostly used for mapping, gathering data for creation of profiles and some other measurements. UAVs allow reducing the volume of field surveying works. The cost of UAVs is very different. Application of low-cost UAVs imposes increased requirements to distribution of control points. As distribution of control points taken from a trolley trajectory is poor, the issue of such control point application emerges. The study of opportunity to use the trolley trajectory for georeferencing of UAV images is carried out. Accuracy estimation of generating photogrammetric models and image-based point clouds using control point coordinates measured with the trolley is given. Accuracy of measuring obstruction clearances with the help of image-based point clouds is estimated.


Author(s):  
E. Lachat ◽  
T. Landes ◽  
P. Grussenmeyer

The combination of data coming from multiple sensors is more and more applied for remote sensing issues (multi-sensor imagery) but also in cultural heritage or robotics, since it often results in increased robustness and accuracy of the final data. In this paper, the reconstruction of building elements such as window frames or door jambs scanned thanks to a low cost 3D sensor (Kinect v2) is presented. Their combination within a global point cloud of an indoor scene acquired with a terrestrial laser scanner (TLS) is considered. If the added elements acquired with the Kinect sensor enable to reach a better level of detail of the final model, an adapted acquisition protocol may also provide several benefits as for example time gain. The paper aims at analyzing whether the two measurement techniques can be complementary in this context. The limitations encountered during the acquisition and reconstruction steps are also investigated.


Author(s):  
Atticus E. L. Stovall ◽  
Jeff W Atkins

The increasingly affordable price point of terrestrial laser scanners has led to a democratization of instrument availability, but the most common low-cost instruments have yet to be compared in terms of the consistency to measure forest structural attributes. Here, we compared two low-cost terrestrial laser scanners (TLS): the Leica BLK360 and the Faro Focus 120 3D. We evaluate the instruments in terms of point cloud quality, forest inventory estimates, tree-model reconstruction, and foliage profile reconstruction. Our direct comparison of the point clouds showed reduced noise in filtered Leica data. Tree diameter and height were consistent across instruments (4.4% and 1.4% error, respectively). Volumetric tree models were less consistent across instruments, with ~29% bias, depending on model reconstruction quality. In the process of comparing foliage profiles, we conducted a sensitivity analysis of factors affecting foliage profile estimates, showing a minimal effect from instrument maximum range (for forests less than ~50 m in height) and surprisingly little impact from degraded scan resolution. Filtered unstructured TLS point clouds must be artificially re-gridded to provide accurate foliage profiles. The factors evaluated in this comparison point towards necessary considerations for future low-cost laser scanner development and application in detecting forest structural parameters.


2020 ◽  
Vol 17 (8) ◽  
pp. 3790-3797
Author(s):  
I. Subha ◽  
P. Narmadha ◽  
S. Nivedha ◽  
T. Sethukarasi

Recent developments in computer vision are seen as a vital advancement in video surveillance. The goal of this research is to build a deep learning model that is capable of analyzing and classifying the video from running CCTV streams to detect criminal actions and identify suspects on the scene. In particular, we focus on the detection of dangerous human behaviors in surveillance videos. This work provides a low cost embedded solution that can be integrated with the existing CCTV cameras. This integration can reduce the cost of transmitting the data to any centralized server, which may have various privacy implications and takes much inference time. We also benchmark our models performance with the existing real-world dataset in terms of accuracy and resource constraints. Using the concept of Multiple Instance Learning on the histogram of the optical flow of the videos combined with the pose estimation of the persons on scene, we provide a lightweight model which has 13 times lesser inference time than the existing very deep models. Focusing on one important thing, this research will expand to which state-of-the-art deep neural networks will “see” violence in photographs and videos, and recognize criminal behavior using characteristics such as gestures, gait, and unethical behavior. This helps enforcement agencies to unravel crime cases faster and also to scale back crimes by identifying the suspects in the surveillance videos.


Sign in / Sign up

Export Citation Format

Share Document