scholarly journals Spatiotemporal Variation of Snow Depth in the Northern Hemisphere from 1992 to 2016

2020 ◽  
Vol 12 (17) ◽  
pp. 2728
Author(s):  
Xiongxin Xiao ◽  
Tingjun Zhang ◽  
Xinyue Zhong ◽  
Xiaodong Li

A comprehensive and hemispheric-scale snow cover and snow depth analysis is a prerequisite for all related processes and interactions investigation on regional and global surface energy and water balance, weather and climate, hydrological processes, and water resources. However, such studies were limited by the lack of data products and/or valid snow retrieval algorithms. The overall objective of this study is to investigate the variation characteristics of snow depth across the Northern Hemisphere from 1992 to 2016. We developed long-term Northern Hemisphere daily snow depth (NHSnow) datasets from passive microwave remote sensing data using the support vector regression (SVR) snow depth retrieval algorithm. NHSnow is evaluated, along with GlobSnow and ERA-Interim/Land, for its accuracy across the Northern Hemisphere against meteorological station snow depth measurements. The results show that NHSnow performs comparably well with a relatively high accuracy for snow depth with a bias of −0.6 cm, mean absolute error of 16 cm, and root mean square error of 20 cm when benchmarked against the station snow depth measurements. The analysis results show that annual average snow depth decreased by 0.06 cm per year from 1992 to 2016. In the three seasons (autumn, winter, and spring), the areas with a significant decreasing trend of seasonal maximum snow depth are larger than those with a significant increasing trend. Additionally, snow cover days decreased at the rate of 0.99 day per year during 1992–2016. This study presents that the variation trends of snow cover days are, in part, not consistent with the variation trends of the annual average snow depth, of which approximately 20% of the snow cover areas show the completely opposite variation trends for these two indexes over the study period. This study provides a new perspective in snow depth variation analysis, and shows that rapid changes in snow depth have been occurring since the beginning of the 21st century, accompanied by dramatic climate warming.

2019 ◽  
Author(s):  
Xiongxin Xiao ◽  
Tingjun Zhang ◽  
Xinyue Zhong ◽  
Xiaodong Li ◽  
Yuxing Li

Abstract. Snow cover is an effective indicator of climate change due to its impact on regional and global surface energy and water balance, and thus also weather and climate, hydrological processes and water resources, and the ecosystem as a whole. The overall objective of this study is to investigate changes and variations of snow depth and snow mass over the Northern Hemisphere from 1992 to 2016. We developed a long term Northern Hemisphere daily snow depth and snow water equivalent product (NHSnow) by applying the support vector regression snow depth retrieval algorithm, using passive microwave remote sensing data from the period. NHSnow product was evaluated along with the other two snow cover products (GlobSnow and ERA-Interim/Land) for its accuracy across the Northern Hemisphere. The evaluation results show that NHSnow performs comparably well with relatively high accuracy (bias: −0.59 cm, mean absolute error: 15.12 cm, and root mean square error: 20.11 cm) when benchmarked against the station snow depth measurements. Further analyses were conducted across the Northern Hemisphere using snow depth, snow mass, and snow cover days as indices. Analysis results show that annual average snow mass have a significant declining trend, with a rate of about 19.72 km3 yr.−1 or a 13 % reduction in snow mass. Although spatial variation pattern of snow depth and snow cover days exhibited slight regional differences, they generally reveal the decreasing trend over the most area of the Northern Hemisphere. Our work provides evidence that rapid changes in snow depth and snow mass are occurring since the beginning of the 21st century, accompanied by dramatic climate warming.


2019 ◽  
Author(s):  
Xiongxin Xiao ◽  
Tingjun Zhang ◽  
Xinyue Zhong ◽  
Xiaodong Li ◽  
Yuxing Li

Abstract. Snow cover is an effective best indicator of climate change due to its effect on regional and global surface energy, water balance, hydrology, climate, and ecosystem function. We developed a long term Northern Hemisphere daily snow depth and snow water equivalent product (NHSnow) by the application of the support vector regression (SVR) snow depth retrieval algorithm to historical passive microwave sensors from 1992 to 2016. The accuracies of the snow depth product were evaluated against observed snow depth at meteorological stations along with the other two snow cover products (GlobSnow and ERA-Interim/Land) across the Northern Hemisphere. The evaluation results showed that NHSnow performs generally well with relatively high accuracy. Further analysis were performed across the Northern Hemisphere during 1992–2016, which used snow depth, total snow water equivalent (snow mass) and, snow cover days as indexes. Analysis showed the total snow water equivalent has a significant declining trends (~ 5794 km3 yr−1, 12.5 % reduction). Although spatial variation pattern of snow depth and snow cover days exhibited slight regional differences, it generally reveals a decreasing trend over most of the Northern Hemisphere. Our work provides evidence that rapid changes in snow depth and total snow water equivalent are occurring beginning at the turn of the 21st century with dramatic, surface-based warming.


2016 ◽  
Author(s):  
Liyun Dai ◽  
Tao Che ◽  
Yongjian Ding ◽  
Xiaohua Hao

Abstract. Snow cover on the Qinghai-Tibetan plateau (QTP) plays a significant role in the global climate system and is an important water resource for rivers in the high elevation region of Asia. At present, passive microwave (PM) remote sensing data are the only efficient way to monitor temporal and spatial variations in snow depth at large scale. However, existing snow depth products show the largest uncertainties across the QTP. In this study, MODIS fractional snow cover product, in situ observations, and airborne observation data are synthesized to evaluate the accuracy of snow cover and snow depth derived from PM remote sensing data and to analyze the possible causes of uncertainties. The results show that the accuracy of snow cover extents varies spatially and depends on the fraction of snow cover. Based on the assumption that grids with MODIS snow cover fraction > 10 % are regarded as snow cover, the overall accuracy in snow cover is 66.7 %, overestimation error is 56.1 %, underestimation error is 21.1 %, commission error is 27.6 % and omission error is 47.4 %. The commission and overestimation errors of snow cover primarily occur in the northwest and southeast areas with low ground temperature. Omission error primarily occurs in cold desert areas with shallow snow, and underestimation error mainly occurs in glacier and lake areas. Comparison between snow depths measured in field experiments, measured at meteorological stations and estimated across the QTP shows that agreement between observation and retrieval improves with an increasing number of observation points in a PM grid. The misclassification and errors between observed and retrieved snow depth are associated with the relatively coarse resolution of PM remote sensing, ground temperature, snow characteristics and topography. To accurately understand the variation in snow depth across the QTP, new algorithms should be developed to retrieve snow depth with higher spatial resolution and should consider the variation in brightness temperatures at different frequencies emitted from ground with changing ground features.


2018 ◽  
Vol 10 (12) ◽  
pp. 1989 ◽  
Author(s):  
Liyun Dai ◽  
Tao Che ◽  
Hongjie Xie ◽  
Xuejiao Wu

Snow cover over the Qinghai-Tibetan Plateau (QTP) plays an important role in climate, hydrological, and ecological systems. Currently, passive microwave remote sensing is the most efficient way to monitor snow depth on global and regional scales; however, it presents a serious overestimation of snow cover over the QTP and has difficulty describing patchy snow cover over the QTP because of its coarse spatial resolution. In this study, a new spatial dynamic method is developed by introducing ground emissivity and assimilating the snow cover fraction (SCF) and land surface temperature (LST) of the Moderate Resolution Imaging Spectroradiometer (MODIS) to derive snow depth at an enhanced spatial resolution. In this method, the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) brightness temperature and MODIS LST are used to calculate ground emissivity. Additionally, the microwave emission model of layered snowpacks (MEMLS) is applied to simulate brightness temperature with varying ground emissivities to determine the key coefficients in the snow depth retrieval algorithm. The results show that the frozen ground emissivity presents large spatial heterogeneity over the QTP, which leads to the variation of coefficients in the snow depth retrieval algorithm. The overestimation of snow depth is rectified by introducing the ground emissivity factor at 18 and 36 GHz. Compared with in situ observations, the snow cover accuracy of the new method is 93.9%, which is better than the 60.2% accuracy of the existing method (old method) which does not consider ground emissivity. The bias and root-mean-square error (RMSE) of snow depth are 1.03 cm and 7.05 cm, respectively, for the new method; these values are much lower than the values of 6.02 cm and 9.75 cm, respectively, for the old method. However, the snow cover accuracy with depths between 1 and 3 cm is below 60%, and snow depths greater than 25 cm are underestimated in Himalayan mountainous areas. In the future, the snow cover identification algorithm should be improved to identify shallow snow cover over the QTP, and topography should be considered in the snow depth retrieval algorithm to improve snow depth accuracy in mountainous areas.


2016 ◽  
Vol 10 (5) ◽  
pp. 2453-2463 ◽  
Author(s):  
Xiaodong Huang ◽  
Jie Deng ◽  
Xiaofang Ma ◽  
Yunlong Wang ◽  
Qisheng Feng ◽  
...  

Abstract. By combining optical remote sensing snow cover products with passive microwave remote sensing snow depth (SD) data, we produced a MODIS (Moderate Resolution Imaging Spectroradiometer) cloudless binary snow cover product and a 500 m snow depth product. The temporal and spatial variations of snow cover from December 2000 to November 2014 in China were analyzed. The results indicate that, over the past 14 years, (1) the mean snow-covered area (SCA) in China was 11.3 % annually and 27 % in the winter season, with the mean SCA decreasing in summer and winter seasons, increasing in spring and fall seasons, and not much change annually; (2) the snow-covered days (SCDs) showed an increase in winter, spring, and fall, and annually, whereas they showed a decrease in summer; (3) the average SD decreased in winter, summer, and fall, while it increased in spring and annually; (4) the spatial distributions of SD and SCD were highly correlated seasonally and annually; and (5) the regional differences in the variation of snow cover in China were significant. Overall, the SCD and SD increased significantly in south and northeast China, and decreased significantly in the north of Xinjiang province. The SCD and SD increased on the southwest edge and in the southeast part of the Tibetan Plateau, whereas it decreased in the north and northwest regions.


2016 ◽  
Author(s):  
Xiaodong Huang ◽  
Jie Deng ◽  
Xiaofang Ma ◽  
Yunlong Wang ◽  
Qisheng Feng ◽  
...  

Abstract. Through combining optical remote sensing snow cover products with passive microwave remote-sensing snow depth data, we produced a MODIS cloudless binary snow cover product and a 500-m spatial resolution snow depth product for December 2000 to November 2014. We used the synthesized products to analyze the temporal and spatial variation of the snow cover in China. The results indicated that in the past 14 years, the overall annual number of snow-covered days and average snow depth in China increased. The annual average snow-covered area did not change significantly, and the number of snow-covered days in summer in China decreased. The number of snow-covered days in the winter, spring, and fall seasons all increased. The average snow-covered area in the summer and winter seasons decreased, whereas the average snow-covered area in the spring and fall seasons increased. The average snow depth in the winter, summer, and fall seasons decreased. Only the average snow depth in spring increased. The spatial distribution of the increase and decrease in the annual average snow depth was highly consistent with that of the annual number of snow-covered days. The spatial distributions of the variation of the number of snow-covered days and the average snow depth of each season were also highly consistent. The regional differences in the snow cover variation in China were significant. The snow cover increased significantly in South and Northeast China, decreased significantly in Xinjiang, increased in the southwest edge and southeast of the Tibetan Plateau, and mainly decreased in the north and northwest regions of the plateau.


Sign in / Sign up

Export Citation Format

Share Document