scholarly journals Using Microwave Profile Radar to Estimate Forest Canopy Leaf Area Index: Linking 3D Radiative Transfer Model and Forest Gap Model

2021 ◽  
Vol 13 (2) ◽  
pp. 297
Author(s):  
Kai Du ◽  
Huaguo Huang ◽  
Ziyi Feng ◽  
Teemu Hakala ◽  
Yuwei Chen ◽  
...  

Profile radar allows direct characterization of the vertical forest structure. Short-wavelength, such as Ku or X band, microwave data provide opportunities to detect the foliage. In order to exploit the potential of radar technology in forestry applications, a helicopter-borne Ku-band profile radar system, named Tomoradar, has been developed by the Finnish Geospatial Research Institute. However, how to use the profile radar waveforms to assess forest canopy parameters remains a challenge. In this study, we proposed a method by matching Tomoradar waveforms with simulated ones to estimate forest canopy leaf area index (LAI). Simulations were conducted by linking an individual tree-based forest gap model ZELIG and a three-dimension (3D) profile radar simulation model RAPID2. The ZELIG model simulated the parameters of potential local forest succession scene, and the RAPID2 model utilized the parameters to generate 3D virtual scenes and simulate waveforms based on Tomoradar configuration. The direct comparison of simulated and collected waveforms from Tomoradar could be carried out, which enabled the derivation of possible canopy LAI distribution corresponding to the Tomoradar waveform. A 600-m stripe of Tomoradar data (HH polarization) collected in the boreal forest at Evo in Finland was used as a test, which was divided into 60 plots with an interval of 10 m along the trajectory. The average waveform of each plot was employed to estimate the canopy LAI. Good results have been found in the waveform matching and the uncertainty of canopy LAI estimation. There were 95% of the plots with the mean relative overlapping rate (RO) above 0.7. The coefficients of variation of canopy LAI estimates were less than 0.20 in 80% of the plots. Compared to lidar-derived canopy effective LAI estimation, the coefficient of determination was 0.46, and the root mean square error (RMSE) was 1.81. This study established a bridge between the Ku band profile radar waveform and the forest canopy LAI by linking the RAPID2 and ZELIG model, presenting the uncertainty of forest canopy LAI estimation using Tomoradar. It is worth noting that since the difference of backscattering contribution is caused by both canopy structure and tree species, similar waveforms may correspond to different canopy LAI, inducing the uncertainty of canopy LAI estimation, which should be noticed in forest parameters estimation with empirical methods.

2021 ◽  
Vol 13 (4) ◽  
pp. 803
Author(s):  
Lingchen Lin ◽  
Kunyong Yu ◽  
Xiong Yao ◽  
Yangbo Deng ◽  
Zhenbang Hao ◽  
...  

As a key canopy structure parameter, the estimation method of the Leaf Area Index (LAI) has always attracted attention. To explore a potential method to estimate forest LAI from 3D point cloud at low cost, we took photos from different angles of the drone and set five schemes (O (0°), T15 (15°), T30 (30°), OT15 (0° and 15°) and OT30 (0° and 30°)), which were used to reconstruct 3D point cloud of forest canopy based on photogrammetry. Subsequently, the LAI values and the leaf area distribution in the vertical direction derived from five schemes were calculated based on the voxelized model. Our results show that the serious lack of leaf area in the middle and lower layers determines that the LAI estimate of O is inaccurate. For oblique photogrammetry, schemes with 30° photos always provided better LAI estimates than schemes with 15° photos (T30 better than T15, OT30 better than OT15), mainly reflected in the lower part of the canopy, which is particularly obvious in low-LAI areas. The overall structure of the single-tilt angle scheme (T15, T30) was relatively complete, but the rough point cloud details could not reflect the actual situation of LAI well. Multi-angle schemes (OT15, OT30) provided excellent leaf area estimation (OT15: R2 = 0.8225, RMSE = 0.3334 m2/m2; OT30: R2 = 0.9119, RMSE = 0.1790 m2/m2). OT30 provided the best LAI estimation accuracy at a sub-voxel size of 0.09 m and the best checkpoint accuracy (OT30: RMSE [H] = 0.2917 m, RMSE [V] = 0.1797 m). The results highlight that coupling oblique photography and nadiral photography can be an effective solution to estimate forest LAI.


2008 ◽  
Vol 31 (2) ◽  
pp. 153-159 ◽  
Author(s):  
So-Hee Kim ◽  
Sin-Kyu Kang ◽  
Jong-Hwan Lim

2009 ◽  
Author(s):  
Zhuo Fu ◽  
Jindi Wang ◽  
Jinling Song ◽  
Hongmin Zhou ◽  
Yong Pang ◽  
...  

2019 ◽  
Vol 11 (15) ◽  
pp. 1791 ◽  
Author(s):  
Ali Rouzbeh Kargar ◽  
Richard MacKenzie ◽  
Gregory P. Asner ◽  
Jan van Aardt

Forests are an important part natural ecosystems, by for example providing food, fiber, habitat, and biodiversity, all of which contribute to stable natural systems. Assessing and modeling the structure and characteristics of forests, e.g., Leaf Area Index (LAI), volume, biomass, etc., can lead to a better understanding and management of these resources. In recent years, Terrestrial Laser Scanning (TLS) has been recognized as a tool that addresses many of the limitations of manual and traditional forest data collection methods. In this study, we propose a density-based approach for estimating the LAI in a structurally-complex forest environment, which contains variable and diverse structural attributes, e.g., non-circular stem forms, dense canopy and below-canopy vegetation cover, and a diverse species composition. In addition, 242 TLS scans were collected using a portable low-cost scanner, the Compact Biomass Lidar (CBL), in the Hawaii Volcanoes National Park (HAVO), Hawaii Island, USA. LAI also was measured for 242 plots in the site, using an AccuPAR LP-80 ceptometer. The first step after cleaning the point cloud involved detecting the higher forest canopy in the light detection and ranging (lidar) point clouds, using normal change rate assessment. We then estimated Leaf Area Density (LAD), using a voxel-based approach, and divided the canopy point cloud into five layers in the Z (vertical) direction. These five layers subsequently were divided into voxels in the X direction, where the size of these voxels were obtained based on inter-quartile analysis and the number of points in each voxel. We hypothesized that the intensity returned to the lidar system from woody materials, like branches, would be higher than from leaves, due to the liquid water absorption feature of the leaves and higher reflectance for woody material at the 905 nm laser wavelength. We also differentiated between foliar and woody materials using edge detection in the images from projected point clouds and evaluated the density of these regions to support our hypothesis. Density of points, or the number of points divided by the volume of a grid, in a 3D grid size of 0.1 m, was calculated for each of the voxels. The grid size was determined by investigating the size of the branches in the lower portion of the canopy. Subsequently, we fitted a Kernel Density Estimator (KDE) to these values, with the threshold set based on half of the area under the curve in each of the density distributions. All the grids with a density below the threshold were labeled as leaves, while those grids above the threshold were identified as non-leaves. Finally, we modeled LAI using the point densities derived from the TLS point clouds and the listed analysis steps. This model resulted in an R 2 value of 0.88. We also estimated the LAI directly from lidar data using the point densities and calculating LAD, which is defined as the total one-sided leaf area per unit volume. LAI can be obtained as the sum of the LAD values in all the voxels. The accuracy of LAI estimation was 90%, with an RMSE value of 0.31, and an average overestimation of 9 % in TLS-derived LAI, when compared to field-measured LAI. Algorithm performance mainly was affected by the vegetation density and complexity of the canopy structures. It is worth noting that, since the LAI values cannot be considered spatially independent throughout all the plots in this site, we performed semivariogram analysis on the field-measured LAI data. This analysis showed that the LAI values can be assumed to be independent in plots that are at least 30 m apart. As a result, we divided the data into six subsets in which the plots were 30 m spaced. The R 2 values for these subsets, based on modeling of the field-measured LAI using leaf point density values, ranged between 0.84–0.96. The results bode well for using this method for efficient, automatic, and accurate/precise estimation of LAI values in complex forest environments, using a low-cost, rapid-scan TLS.


2012 ◽  
Vol 8 (2) ◽  
pp. 67-76 ◽  
Author(s):  
Taku M. Saitoh ◽  
Shin Nagai ◽  
Hibiki M. Noda ◽  
Hiroyuki Muraoka ◽  
Kenlo Nishida Nasahara

2019 ◽  
Author(s):  
Shelley C. van der Graaf ◽  
Richard Kranenburg ◽  
Arjo J. Segers ◽  
Martijn Schaap ◽  
Jan Willem Erisman

Abstract. The nitrogen cycle has been continuously disrupted by human activity over the past century, resulting in almost a tripling of the total reactive nitrogen fixation in Europe. Consequently, excessive amounts of reactive nitrogen (Nr) have manifested in the environment, leading to a cascade of adverse effects, such as acidification and eutrophication of terrestrial and aquatic ecosystems, and particulate matter formation. Chemistry transport models (CTM) are frequently used as tools to simulate the complex chain of processes that determine atmospheric Nr flows. In these models, the parameterization of the atmosphere-biosphere exchange of Nr is largely based on few surface exchange measurement and is therefore known to be highly uncertain. In addition to this, the input parameters that are used here are often fixed values, only linked to specific land use classes. In an attempt to improve this, a combination of multiple satellite products is used to derive updated, time-variant leaf area index (LAI) and roughness length (z0) input maps. As LAI, we use the MODIS MCD15A2H product. The monthly z0 input maps presented in this paper are a function of satellite-derived NDVI values (MYD13A3 product) for short vegetation types (such as grass and arable land) and a combination of satellite-derived forest canopy height and LAI for forests. The use of these growth-dependent satellite products allows us to represent the growing season more realistically. For urban areas, the z0 values are updated, too, and linked to a population density map. The approach to derive these dynamic z0 estimates can be linked to any land use map and is as such transferable to other models. We evaluated the resulting changes in modelled deposition of Nr components using the LOTOS-EUROS CTM, focusing on Germany, the Netherlands and Belgium. The implementation of these updated LAI and z0 input maps led to local changes in the total Nr deposition of up to ~ 30 % and a general shift from wet to dry deposition. The most distinct changes are observed in land use specific deposition fluxes. These fluxes may show relatively large deviations, locally affecting estimated critical load exceedances for specific natural ecosystems.


Sign in / Sign up

Export Citation Format

Share Document