scholarly journals UAV Based Estimation of Forest Leaf Area Index (LAI) through Oblique Photogrammetry

2021 ◽  
Vol 13 (4) ◽  
pp. 803
Author(s):  
Lingchen Lin ◽  
Kunyong Yu ◽  
Xiong Yao ◽  
Yangbo Deng ◽  
Zhenbang Hao ◽  
...  

As a key canopy structure parameter, the estimation method of the Leaf Area Index (LAI) has always attracted attention. To explore a potential method to estimate forest LAI from 3D point cloud at low cost, we took photos from different angles of the drone and set five schemes (O (0°), T15 (15°), T30 (30°), OT15 (0° and 15°) and OT30 (0° and 30°)), which were used to reconstruct 3D point cloud of forest canopy based on photogrammetry. Subsequently, the LAI values and the leaf area distribution in the vertical direction derived from five schemes were calculated based on the voxelized model. Our results show that the serious lack of leaf area in the middle and lower layers determines that the LAI estimate of O is inaccurate. For oblique photogrammetry, schemes with 30° photos always provided better LAI estimates than schemes with 15° photos (T30 better than T15, OT30 better than OT15), mainly reflected in the lower part of the canopy, which is particularly obvious in low-LAI areas. The overall structure of the single-tilt angle scheme (T15, T30) was relatively complete, but the rough point cloud details could not reflect the actual situation of LAI well. Multi-angle schemes (OT15, OT30) provided excellent leaf area estimation (OT15: R2 = 0.8225, RMSE = 0.3334 m2/m2; OT30: R2 = 0.9119, RMSE = 0.1790 m2/m2). OT30 provided the best LAI estimation accuracy at a sub-voxel size of 0.09 m and the best checkpoint accuracy (OT30: RMSE [H] = 0.2917 m, RMSE [V] = 0.1797 m). The results highlight that coupling oblique photography and nadiral photography can be an effective solution to estimate forest LAI.

2019 ◽  
Vol 11 (15) ◽  
pp. 1791 ◽  
Author(s):  
Ali Rouzbeh Kargar ◽  
Richard MacKenzie ◽  
Gregory P. Asner ◽  
Jan van Aardt

Forests are an important part natural ecosystems, by for example providing food, fiber, habitat, and biodiversity, all of which contribute to stable natural systems. Assessing and modeling the structure and characteristics of forests, e.g., Leaf Area Index (LAI), volume, biomass, etc., can lead to a better understanding and management of these resources. In recent years, Terrestrial Laser Scanning (TLS) has been recognized as a tool that addresses many of the limitations of manual and traditional forest data collection methods. In this study, we propose a density-based approach for estimating the LAI in a structurally-complex forest environment, which contains variable and diverse structural attributes, e.g., non-circular stem forms, dense canopy and below-canopy vegetation cover, and a diverse species composition. In addition, 242 TLS scans were collected using a portable low-cost scanner, the Compact Biomass Lidar (CBL), in the Hawaii Volcanoes National Park (HAVO), Hawaii Island, USA. LAI also was measured for 242 plots in the site, using an AccuPAR LP-80 ceptometer. The first step after cleaning the point cloud involved detecting the higher forest canopy in the light detection and ranging (lidar) point clouds, using normal change rate assessment. We then estimated Leaf Area Density (LAD), using a voxel-based approach, and divided the canopy point cloud into five layers in the Z (vertical) direction. These five layers subsequently were divided into voxels in the X direction, where the size of these voxels were obtained based on inter-quartile analysis and the number of points in each voxel. We hypothesized that the intensity returned to the lidar system from woody materials, like branches, would be higher than from leaves, due to the liquid water absorption feature of the leaves and higher reflectance for woody material at the 905 nm laser wavelength. We also differentiated between foliar and woody materials using edge detection in the images from projected point clouds and evaluated the density of these regions to support our hypothesis. Density of points, or the number of points divided by the volume of a grid, in a 3D grid size of 0.1 m, was calculated for each of the voxels. The grid size was determined by investigating the size of the branches in the lower portion of the canopy. Subsequently, we fitted a Kernel Density Estimator (KDE) to these values, with the threshold set based on half of the area under the curve in each of the density distributions. All the grids with a density below the threshold were labeled as leaves, while those grids above the threshold were identified as non-leaves. Finally, we modeled LAI using the point densities derived from the TLS point clouds and the listed analysis steps. This model resulted in an R 2 value of 0.88. We also estimated the LAI directly from lidar data using the point densities and calculating LAD, which is defined as the total one-sided leaf area per unit volume. LAI can be obtained as the sum of the LAD values in all the voxels. The accuracy of LAI estimation was 90%, with an RMSE value of 0.31, and an average overestimation of 9 % in TLS-derived LAI, when compared to field-measured LAI. Algorithm performance mainly was affected by the vegetation density and complexity of the canopy structures. It is worth noting that, since the LAI values cannot be considered spatially independent throughout all the plots in this site, we performed semivariogram analysis on the field-measured LAI data. This analysis showed that the LAI values can be assumed to be independent in plots that are at least 30 m apart. As a result, we divided the data into six subsets in which the plots were 30 m spaced. The R 2 values for these subsets, based on modeling of the field-measured LAI using leaf point density values, ranged between 0.84–0.96. The results bode well for using this method for efficient, automatic, and accurate/precise estimation of LAI values in complex forest environments, using a low-cost, rapid-scan TLS.


2019 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Tiangang Yin ◽  
Jianbo Qi ◽  
Bruce D. Cook ◽  
Douglas C. Morton ◽  
Shanshan Wei ◽  
...  

Airborne lidar point clouds of vegetation capture the 3-D distribution of its scattering elements, including leaves, branches, and ground features. Assessing the contribution from vegetation to the lidar point clouds requires an understanding of the physical interactions between the emitted laser pulses and their targets. Most of the current methods to estimate the gap probability ( P gap ) or leaf area index (LAI) from small-footprint airborne laser scan (ALS) point clouds rely on either point-number-based (PNB) or intensity-based (IB) approaches, with additional empirical correlations with field measurements. However, site-specific parameterizations can limit the application of certain methods to other landscapes. The universality evaluation of these methods requires a physically based radiative transfer model that accounts for various lidar instrument specifications and environmental conditions. We conducted an extensive study to compare these approaches for various 3-D forest scenes using a point-cloud simulator developed for the latest version of the discrete anisotropic radiative transfer (DART) model. We investigated a range of variables for possible lidar point intensity, including radiometric quantities derived from Gaussian Decomposition (GD), such as the peak amplitude, standard deviation, integral of Gaussian profiles, and reflectance. The results disclosed that the PNB methods fail to capture the exact P gap as footprint size increases. By contrast, we verified that physical methods using lidar point intensity defined by either the distance-weighted integral of Gaussian profiles or reflectance can estimate P gap and LAI with higher accuracy and reliability. Additionally, the removal of certain additional empirical correlation coefficients is feasible. Routine use of small-footprint point-cloud radiometric measures to estimate P gap and the LAI potentially confirms a departure from previous empirical studies, but this depends on additional parameters from lidar instrument vendors.


2008 ◽  
Vol 31 (2) ◽  
pp. 153-159 ◽  
Author(s):  
So-Hee Kim ◽  
Sin-Kyu Kang ◽  
Jong-Hwan Lim

2020 ◽  
Vol 12 (15) ◽  
pp. 2378
Author(s):  
Yang Song ◽  
Jinfei Wang ◽  
Jiali Shang ◽  
Chunhua Liao

Knowledge of sub-field yield potential is critical for guiding precision farming. The recently developed simulated observation of point cloud (SOPC) method can generate high spatial resolution winter wheat effective leaf area index (SOPC-LAIe) maps from the unmanned aerial vehicle (UAV)-based point cloud data without ground-based measurements. In this study, the SOPC-LAIe maps, for the first time, were applied to the simple algorithm for yield estimation (SAFY) to generate the sub-field biomass and yield maps. First, the dry aboveground biomass (DAM) measurements were used to determine the crop cultivar-specific parameters and simulated green leaf area index (LAI) in the SAFY model. Then, the SOPC-LAIe maps were converted to green LAI using a normalization approach. Finally, the multiple SOPC-LAIe maps were applied to the SAFY model to generate the final DAM and yield maps. The root mean square error (RMSE) between the estimated and measured yield is 88 g/m2, and the relative root mean squire error (RRMSE) is 15.2%. The pixel-based DAM and yield map generated in this study revealed clearly the within-field yield variation. This framework using the UAV-based SOPC-LAIe maps and SAFY model could be a simple and low-cost alternative for final yield estimation at the sub-field scale.


2009 ◽  
Author(s):  
Zhuo Fu ◽  
Jindi Wang ◽  
Jinling Song ◽  
Hongmin Zhou ◽  
Yong Pang ◽  
...  

2020 ◽  
Vol 18 ◽  
pp. 100295
Author(s):  
Indu Indirabai ◽  
M.V. Harindranathan Nair ◽  
Jaishanker R. Nair ◽  
Rama Rao Nidamanuri

2019 ◽  
Vol 12 (1) ◽  
pp. 16 ◽  
Author(s):  
Naichen Xing ◽  
Wenjiang Huang ◽  
Qiaoyun Xie ◽  
Yue Shi ◽  
Huichun Ye ◽  
...  

Leaf area index (LAI) is a key parameter in plant growth monitoring. For several decades, vegetation indices-based empirical method has been widely-accepted in LAI retrieval. A growing number of spectral indices have been proposed to tailor LAI estimations, however, saturation effect has long been an obstacle. In this paper, we classify the selected 14 vegetation indices into five groups according to their characteristics. In this study, we proposed a new index for LAI retrieval-transformed triangular vegetation index (TTVI), which replaces NIR and red bands of triangular vegetation index (TVI) into NIR and red-edge bands. All fifteen indices were calculated and analyzed with both hyperspectral and multispectral data. Best-fit models and k-fold cross-validation were conducted. The results showed that TTVI performed the best predictive power of LAI for both hyperspectral and multispectral data, and mitigated the saturation effect. The R2 and RMSE values were 0.60, 1.12; 0.59, 1.15, respectively. Besides, TTVI showed high estimation accuracy for sparse (LAI < 4) and dense canopies (LAI > 4). Our study provided the value of the Red-edge bands of the Sentinel-2 satellite sensors in crop LAI retrieval, and demonstrated that the new index TTVI is applicable to inverse LAI for both low-to-moderate and moderate-to-high vegetation cover.


Sign in / Sign up

Export Citation Format

Share Document