scholarly journals The effect of satellite derived leaf area index and roughness length information on modelled reactive nitrogen deposition in north-western Europe

2019 ◽  
Author(s):  
Shelley C. van der Graaf ◽  
Richard Kranenburg ◽  
Arjo J. Segers ◽  
Martijn Schaap ◽  
Jan Willem Erisman

Abstract. The nitrogen cycle has been continuously disrupted by human activity over the past century, resulting in almost a tripling of the total reactive nitrogen fixation in Europe. Consequently, excessive amounts of reactive nitrogen (Nr) have manifested in the environment, leading to a cascade of adverse effects, such as acidification and eutrophication of terrestrial and aquatic ecosystems, and particulate matter formation. Chemistry transport models (CTM) are frequently used as tools to simulate the complex chain of processes that determine atmospheric Nr flows. In these models, the parameterization of the atmosphere-biosphere exchange of Nr is largely based on few surface exchange measurement and is therefore known to be highly uncertain. In addition to this, the input parameters that are used here are often fixed values, only linked to specific land use classes. In an attempt to improve this, a combination of multiple satellite products is used to derive updated, time-variant leaf area index (LAI) and roughness length (z0) input maps. As LAI, we use the MODIS MCD15A2H product. The monthly z0 input maps presented in this paper are a function of satellite-derived NDVI values (MYD13A3 product) for short vegetation types (such as grass and arable land) and a combination of satellite-derived forest canopy height and LAI for forests. The use of these growth-dependent satellite products allows us to represent the growing season more realistically. For urban areas, the z0 values are updated, too, and linked to a population density map. The approach to derive these dynamic z0 estimates can be linked to any land use map and is as such transferable to other models. We evaluated the resulting changes in modelled deposition of Nr components using the LOTOS-EUROS CTM, focusing on Germany, the Netherlands and Belgium. The implementation of these updated LAI and z0 input maps led to local changes in the total Nr deposition of up to ~ 30 % and a general shift from wet to dry deposition. The most distinct changes are observed in land use specific deposition fluxes. These fluxes may show relatively large deviations, locally affecting estimated critical load exceedances for specific natural ecosystems.

2020 ◽  
Vol 13 (5) ◽  
pp. 2451-2474
Author(s):  
Shelley C. van der Graaf ◽  
Richard Kranenburg ◽  
Arjo J. Segers ◽  
Martijn Schaap ◽  
Jan Willem Erisman

Abstract. The nitrogen cycle has been continuously disrupted by human activity over the past century, resulting in almost a tripling of the total reactive nitrogen fixation in Europe. Consequently, excessive amounts of reactive nitrogen (Nr) have manifested in the environment, leading to a cascade of adverse effects, such as acidification and eutrophication of terrestrial and aquatic ecosystems, and particulate matter formation. Chemistry transport models (CTMs) are frequently used as tools to simulate the complex chain of processes that determine atmospheric Nr flows. In these models, the parameterization of the atmosphere–biosphere exchange of Nr is largely based on few surface exchange measurement and is therefore known to be highly uncertain. In addition to this, the input parameters that are used here are often fixed values, only linked to specific land use classes. In an attempt to improve this, a combination of multiple satellite products is used to derive updated, time-variant leaf area index (LAI) and roughness length (z0) input maps. As LAI, we use the Moderate Resolution Imaging Spectroradiometer (MODIS) MCD15A2H product. The monthly z0 input maps presented in this paper are a function of satellite-derived normalized difference vegetation index (NDVI) values (MYD13A3 product) for short vegetation types (such as grass and arable land) and a combination of satellite-derived forest canopy height and LAI for forests. The use of these growth-dependent satellite products allows us to represent the growing season more realistically. For urban areas, the z0 values are updated, too, and linked to a population density map. The approach to derive these dynamic z0 estimates can be linked to any land use map and is as such transferable to other models. We evaluated the sensitivity of the modelled Nr deposition fields in LOng Term Ozone Simulation – EURopean Operational Smog (LOTOS-EUROS) v2.0 to the abovementioned changes in LAI and z0 inputs, focusing on Germany, the Netherlands and Belgium. We computed z0 values from FLUXNET sites and compared these to the default and updated z0 values in LOTOS-EUROS. The root mean square difference (RMSD) for both short vegetation and forest sites improved. Comparing all sites, the RMSD decreased from 0.76 (default z0) to 0.60 (updated z0). The implementation of these updated LAI and z0 input maps led to local changes in the total Nr deposition of up to ∼30 % and a general shift from wet to dry deposition. The most distinct changes are observed in land-use-specific deposition fluxes. These fluxes may show relatively large deviations, locally affecting estimated critical load exceedances for specific natural ecosystems.


2021 ◽  
Vol 13 (4) ◽  
pp. 803
Author(s):  
Lingchen Lin ◽  
Kunyong Yu ◽  
Xiong Yao ◽  
Yangbo Deng ◽  
Zhenbang Hao ◽  
...  

As a key canopy structure parameter, the estimation method of the Leaf Area Index (LAI) has always attracted attention. To explore a potential method to estimate forest LAI from 3D point cloud at low cost, we took photos from different angles of the drone and set five schemes (O (0°), T15 (15°), T30 (30°), OT15 (0° and 15°) and OT30 (0° and 30°)), which were used to reconstruct 3D point cloud of forest canopy based on photogrammetry. Subsequently, the LAI values and the leaf area distribution in the vertical direction derived from five schemes were calculated based on the voxelized model. Our results show that the serious lack of leaf area in the middle and lower layers determines that the LAI estimate of O is inaccurate. For oblique photogrammetry, schemes with 30° photos always provided better LAI estimates than schemes with 15° photos (T30 better than T15, OT30 better than OT15), mainly reflected in the lower part of the canopy, which is particularly obvious in low-LAI areas. The overall structure of the single-tilt angle scheme (T15, T30) was relatively complete, but the rough point cloud details could not reflect the actual situation of LAI well. Multi-angle schemes (OT15, OT30) provided excellent leaf area estimation (OT15: R2 = 0.8225, RMSE = 0.3334 m2/m2; OT30: R2 = 0.9119, RMSE = 0.1790 m2/m2). OT30 provided the best LAI estimation accuracy at a sub-voxel size of 0.09 m and the best checkpoint accuracy (OT30: RMSE [H] = 0.2917 m, RMSE [V] = 0.1797 m). The results highlight that coupling oblique photography and nadiral photography can be an effective solution to estimate forest LAI.


2013 ◽  
Vol 6 (2) ◽  
pp. 563-582 ◽  
Author(s):  
S. Faroux ◽  
A. T. Kaptué Tchuenté ◽  
J.-L. Roujean ◽  
V. Masson ◽  
E. Martin ◽  
...  

Abstract. The overall objective of the present study is to introduce the new ECOCLIMAP-II database for Europe, which is an upgrade for this region of the former initiative, ECOCLIMAP-I, already implemented at global scale. The ECOCLIMAP programme is a dual database at 1 km resolution that includes an ecosystem classification and a coherent set of land surface parameters that are primarily mandatory in meteorological modelling (notably leaf area index and albedo). Hence, the aim of this innovative physiography is to enhance the quality of initialisation and impose some surface attributes within the scope of weather forecasting and climate related studies. The strategy for implementing ECOCLIMAP-II is to depart from prevalent land cover products such as CLC2000 (Corine Land Cover) and GLC2000 (Global Land Cover) by splitting existing classes into new classes that possess a better regional character by virtue of the climatic environment (latitude, proximity to the sea, topography). The leaf area index (LAI) from MODIS and normalized difference vegetation index (NDVI) from SPOT/Vegetation (a global monitoring system of vegetation) yield the two proxy variables that were considered here in order to perform a multi-year trimmed analysis between 1999 and 2005 using the K-means method. Further, meteorological applications require each land cover type to appear as a partition of fractions of 4 main surface types or tiles (nature, water bodies, sea, urban areas) and, inside the nature tile, fractions of 12 plant functional types (PFTs) representing generic vegetation types – principally broadleaf forest, needleleaf forest, C3 and C4 crops, grassland and bare land – as incorporated by the SVAT model ISBA (Interactions Surface Biosphere Atmosphere) developed at Météo France. This landscape division also forms the cornerstone of a validation exercise. The new ECOCLIMAP-II can be verified with auxiliary land cover products at very fine and coarse resolutions by means of versatile land occupation nomenclatures.


2008 ◽  
Vol 31 (2) ◽  
pp. 153-159 ◽  
Author(s):  
So-Hee Kim ◽  
Sin-Kyu Kang ◽  
Jong-Hwan Lim

2009 ◽  
Author(s):  
Zhuo Fu ◽  
Jindi Wang ◽  
Jinling Song ◽  
Hongmin Zhou ◽  
Yong Pang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document