scholarly journals Multi-Scale LG-Mod Analysis for a More Reliable SAR Sea Surface Wind Directions Retrieval

2021 ◽  
Vol 13 (3) ◽  
pp. 410
Author(s):  
Fabio Michele Rana ◽  
Maria Adamo

An improved version of the Local-Gradient-Modified (LG-Mod) algorithm for Sea Surface Wind (SSW) directions retrieval by means of Synthetic Aperture Radar (SAR) images is presented. A “local” multi-scale analysis of wind-aligned SAR patterns is introduced to improve the LG-Mod sensitivity to SAR backscattering modulations, occurring locally with various spatial wavelengths. The Marginal Error parameter is redefined, and the adoption of the Directional Accuracy Maximization Criterion (DAMC) allows for the novel Multi-Scale (MS) LG-Mod to automatically select the local processing scale that may be regarded as optimal for pattern enhancement, once a discrete set of scales has been already fixed. Hence, this optimal scale successfully gives evidence to guarantee the best achievable local direction estimation. The assessment of the MS LG-Mod is carried on both simulated SAR images and a Sentinel-1 (S-1) dataset, consisting of 350 Interferometric Wide Swath Ground Range Multi-Look Detected High-Resolution images, which cover the region of the Gulf of Maine. In the latter case, the removal of artifacts and non-wind features from SAR amplitudes is mandatory before directional estimations. In situ wind observations gathered by the National Oceanic and Atmospheric Administration National Data Buoy Center (NOAA NDBC) are exploited for validation. The findings obtained from S-1 data confirm the ones from simulated patterns. The MS LG-Mod analysis performs better than each single-scale one in terms of both percentages of reliable directions and directional Root Mean Square Error (RMSE) values achieved.

2019 ◽  
Vol 11 (2) ◽  
pp. 153 ◽  
Author(s):  
Yuan Gao ◽  
Changlong Guan ◽  
Jian Sun ◽  
Lian Xie

In contrast to co-polarization (VV or HH) synthetic aperture radar (SAR) images, cross-polarization (CP for VH or HV) SAR images can be used to retrieve sea surface wind speeds larger than 20 m/s without knowing the wind directions. In this paper, a new wind speed retrieval model is proposed for European Space Agency (ESA) Sentinel-1A (S-1A) Extra-Wide swath (EW) mode VH-polarized images. Nineteen S-1A images under tropical cyclone condition observed in the 2016 hurricane season and the matching data from the Soil Moisture Active Passive (SMAP) radiometer are collected and divided into two datasets. The relationships between normalized radar cross-section (NRCS), sea surface wind speed, wind direction and radar incidence angle are analyzed for each sub-band, and an empirical retrieval model is presented. To correct the large biases at the center and at the boundaries of each sub-band, a corrected model with an incidence angle factor is proposed. The new model is validated by comparing the wind speeds retrieved from S-1A images with the wind speeds measured by SMAP. The results suggest that the proposed model can be used to retrieve wind speeds up to 35 m/s for sub-bands 1 to 4 and 25 m/s for sub-band 5.


2017 ◽  
Vol 9 (7) ◽  
pp. 671 ◽  
Author(s):  
Lizhang Zhou ◽  
Gang Zheng ◽  
Xiaofeng Li ◽  
Jingsong Yang ◽  
Lin Ren ◽  
...  

2021 ◽  
Vol 13 (22) ◽  
pp. 4501
Author(s):  
Yuan Gao ◽  
Jie Zhang ◽  
Changlong Guan ◽  
Jian Sun

The spaceborne synthetic aperture radar (SAR) cross-polarization signal remains sensitive to sea surface wind speed with high signal-to-noise ratio under tropical cyclone (TC) conditions. It has the capability of observing TC intensity and size information over the ocean with large coverage and high spatial resolution. In this paper, TC wind distribution characteristics were studied based on SAR images. We collected 41 Sentinel-1A/B cross-polarization images covering TC eye, which were acquired between 2016 and 2020. For each case, sea surface wind speeds were retrieved by the modified MS1A model in a spatial resolution of 1 km. After deriving the value and location of maximum wind speed, wind fields were simulated symmetrically within a 200 km radius. Two new methodologies were proposed to calculate the decay index and the symmetry index based on the retrieved and simulated wind fields. Characteristics of the two indices were analyzed with respect to maximum wind. In addition, the maximum and averaged wind speeds of the right, back and left side of the motion direction were compared with TC intensity and storm motion speed. Statistical results indicate that right-side wind speed is the strongest for maximum and average, the wind difference between the left and right side is dependent on storm motion speed.


2012 ◽  
Vol 50 (7) ◽  
pp. 2901-2909 ◽  
Author(s):  
Alexis A. Mouche ◽  
Fabrice Collard ◽  
Bertrand Chapron ◽  
Knut-Frode Dagestad ◽  
Gilles Guitton ◽  
...  

2019 ◽  
Vol 11 (9) ◽  
pp. 1112
Author(s):  
Guoqing Han ◽  
Changming Dong ◽  
Junde Li ◽  
Jingsong Yang ◽  
Qingyue Wang ◽  
...  

Based on both satellite remote sensing sea surface temperature (SST) data and numerical model results, SST warming differences in the Mozambique Channel (MC) west of the Madagascar Island (MI) were found with respect to the SST east of the MI along the same latitude. The mean SST west of the MI is up to about 3.0 °C warmer than that east of the MI. The SST differences exist all year round and the maximum value appears in October. The area of the highest SST is located in the northern part of the MC. Potential factors causing the SST anomalies could be sea surface wind, heat flux and oceanic flow advection. The presence of the MI results in weakening wind in the MC and in turn causes weakening of the mixing in the upper oceans, thus the surface mixed layer depth becomes shallower. There is more precipitation on the east of the MI than that inside the MC because of the orographic effects. Different precipitation patterns and types of clouds result in different solar radiant heat fluxes across both sides of the MI. Warm water advected from the equatorial area also contribute to the SST warm anomalies.


2004 ◽  
Vol 1 (6) ◽  
pp. 137-143 ◽  
Author(s):  
Alexey Nekrasov ◽  
Jacco J.M. de Wit ◽  
Peter Hoogeboom

Sign in / Sign up

Export Citation Format

Share Document