scholarly journals Analyzing Sea Surface Wind Distribution Characteristics of Tropical Cyclone Based on Sentinel-1 SAR Images

2021 ◽  
Vol 13 (22) ◽  
pp. 4501
Author(s):  
Yuan Gao ◽  
Jie Zhang ◽  
Changlong Guan ◽  
Jian Sun

The spaceborne synthetic aperture radar (SAR) cross-polarization signal remains sensitive to sea surface wind speed with high signal-to-noise ratio under tropical cyclone (TC) conditions. It has the capability of observing TC intensity and size information over the ocean with large coverage and high spatial resolution. In this paper, TC wind distribution characteristics were studied based on SAR images. We collected 41 Sentinel-1A/B cross-polarization images covering TC eye, which were acquired between 2016 and 2020. For each case, sea surface wind speeds were retrieved by the modified MS1A model in a spatial resolution of 1 km. After deriving the value and location of maximum wind speed, wind fields were simulated symmetrically within a 200 km radius. Two new methodologies were proposed to calculate the decay index and the symmetry index based on the retrieved and simulated wind fields. Characteristics of the two indices were analyzed with respect to maximum wind. In addition, the maximum and averaged wind speeds of the right, back and left side of the motion direction were compared with TC intensity and storm motion speed. Statistical results indicate that right-side wind speed is the strongest for maximum and average, the wind difference between the left and right side is dependent on storm motion speed.

2019 ◽  
Vol 11 (2) ◽  
pp. 153 ◽  
Author(s):  
Yuan Gao ◽  
Changlong Guan ◽  
Jian Sun ◽  
Lian Xie

In contrast to co-polarization (VV or HH) synthetic aperture radar (SAR) images, cross-polarization (CP for VH or HV) SAR images can be used to retrieve sea surface wind speeds larger than 20 m/s without knowing the wind directions. In this paper, a new wind speed retrieval model is proposed for European Space Agency (ESA) Sentinel-1A (S-1A) Extra-Wide swath (EW) mode VH-polarized images. Nineteen S-1A images under tropical cyclone condition observed in the 2016 hurricane season and the matching data from the Soil Moisture Active Passive (SMAP) radiometer are collected and divided into two datasets. The relationships between normalized radar cross-section (NRCS), sea surface wind speed, wind direction and radar incidence angle are analyzed for each sub-band, and an empirical retrieval model is presented. To correct the large biases at the center and at the boundaries of each sub-band, a corrected model with an incidence angle factor is proposed. The new model is validated by comparing the wind speeds retrieved from S-1A images with the wind speeds measured by SMAP. The results suggest that the proposed model can be used to retrieve wind speeds up to 35 m/s for sub-bands 1 to 4 and 25 m/s for sub-band 5.


2019 ◽  
Vol 11 (24) ◽  
pp. 3013 ◽  
Author(s):  
Cheng Jing ◽  
Xinliang Niu ◽  
Chongdi Duan ◽  
Feng Lu ◽  
Guodong Di ◽  
...  

Launched on 5 June 2019, the BuFeng-1 A/B twin satellites were part of the first Chinese global navigation satellite system reflectometry (GNSS-R) satellite mission. In this letter, a brief introduction of the BF-1 mission and its preliminary results of sea surface wind retrieval are presented. Empirical fully developed sea (FDS) geophysical model functions (GMFs) relating the normalized bistatic radar cross-section to the sea surface wind speed are proposed for the BF-1 GNSS-R instruments. The FDS GMFs are derived from the collocated BF-1 observations, the European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data, and the advanced scatterometer (ASCAT) satellite observations. The preliminary tests reveal that the root-mean-square error (RMSE) between the derived wind speed and the reanalysis is 2.63 m/s for wind speeds in the range of 0.5–40.5 m/s. Further comparisons with the ASCAT observations and mooring buoys show that the RMSEs are 2.04 m/s and 1.77 m/s, respectively, at low-to-moderate wind speeds. This study demonstrates the effectiveness of BF-1 and provides a basis for the future GMF development of the BF-1 A/B mission.


2007 ◽  
Vol 20 (23) ◽  
pp. 5798-5814 ◽  
Author(s):  
Adam Hugh Monahan

Abstract This study considers the probability distribution of sea surface wind speeds, which have historically been modeled using the Weibull distribution. First, non-Weibull structure in the observed sea surface wind speeds (from SeaWinds observations) is characterized using relative entropy, a natural information theoretic measure of the difference between probability distributions. Second, empirical models of the probability distribution of sea surface wind speeds, parameterized in terms of the parameters of the vector wind probability distribution, are developed. It is shown that Gaussian fluctuations in the vector wind cannot account for the observed features of the sea surface wind speed distribution, even if anisotropy in the fluctuations is accounted for. Four different non-Gaussian models of the vector wind distribution are then considered: the bi-Gaussian, the centered gamma, the Gram–Charlier, and the constrained maximum entropy. It is shown that so long as the relationship between the skewness and kurtosis of the along-mean sea surface wind component characteristic of observations is accounted for in the modeled probability distribution, then all four vector wind distributions are able to simulate the observed mean, standard deviation, and skewness of the sea surface wind speeds with an accuracy much higher than is possible if non-Gaussian structure in the vector winds is neglected. The constrained maximum entropy distribution is found to lead to the best simulation of the wind speed probability distribution. The significance of these results for the parameterization of air/sea fluxes in general circulation models is discussed.


2018 ◽  
Vol 35 (7) ◽  
pp. 1521-1532 ◽  
Author(s):  
Murilo T. Silva ◽  
Eric W. Gill ◽  
Weimin Huang

AbstractThis work presents the use of a nonlinear autoregressive neural network to obtain an improved estimate of sea surface winds, taking Placentia Bay, Newfoundland and Labrador, Canada, as a study case. The network inputs and delays were chosen through cross correlation with the target variable. The proposed method was compared with five other wind speed estimation techniques, outperforming them in correlation, precision, accuracy, and bias levels. As an extension, the temporal gap filling of missing wind speed data during a storm has been considered. Data containing a measurement gap from a 40-yr windstorm that hit the same location has been used. The proposed method filled the gaps in the dataset with a high degree of correlation with measurements obtained by surrounding stations. The method presented in this work showed promising results that could be extended to estimate wind speeds in other locations and filling gaps in other datasets.


2006 ◽  
Vol 19 (4) ◽  
pp. 521-534 ◽  
Author(s):  
Adam Hugh Monahan

Abstract The statistical structure of sea surface wind speeds is considered, both in terms of the leading-order moments (mean, standard deviation, and skewness) and in terms of the parameters of a best-fit Weibull distribution. An intercomparison is made of the statistical structure of sea surface wind speed data from four different datasets: SeaWinds scatterometer observations, a blend of Special Sensor Microwave Imager (SSM/I) satellite observations with ECMWF analyses, and two reanalysis products [NCEP–NCAR and 40-yr ECMWF Re-Analysis (ERA-40)]. It is found that while the details of the statistical structure of sea surface wind speeds differs between the datasets, the leading-order features of the distributions are consistent. In particular, it is found in all datasets that the skewness of the wind speed is a concave upward function of the ratio of the mean wind speed to its standard deviation, such that the skewness is positive where the ratio is relatively small (such as over the extratropical Northern Hemisphere), the skewness is close to zero where the ratio is intermediate (such as the Southern Ocean), and the skewness is negative where the ratio is relatively large (such as the equatorward flank of the subtropical highs). This relationship between moments is also found in buoy observations of sea surface winds. In addition, the seasonal evolution of the probability distribution of sea surface wind speeds is characterized. It is found that the statistical structure on seasonal time scales shares the relationships between moments characteristic of the year-round data. Furthermore, the seasonal data are shown to depart from Weibull behavior in the same fashion as the year-round data, indicating that non-Weibull structure in the year-round data does not arise due to seasonal nonstationarity in the parameters of a strictly Weibull time series.


2011 ◽  
Vol 29 (2) ◽  
pp. 393-399
Author(s):  
T. I. Tarkhova ◽  
M. S. Permyakov ◽  
E. Yu. Potalova ◽  
V. I. Semykin

Abstract. Sea surface wind perturbations over sea surface temperature (SST) cold anomalies over the Kashevarov Bank (KB) of the Okhotsk Sea are analyzed using satellite (AMSR-E and QuikSCAT) data during the summer-autumn period of 2006–2009. It is shown, that frequency of cases of wind speed decreasing over a cold spot in August–September reaches up to 67%. In the cold spot center SST cold anomalies reached 10.5 °C and wind speed lowered down to ~7 m s−1 relative its value on the periphery. The wind difference between a periphery and a centre of the cold spot is proportional to SST difference with the correlations 0.5 for daily satellite passes data, 0.66 for 3-day mean data and 0.9 for monthly ones. For all types of data the coefficient of proportionality consists of ~0.3 m s−1 on 1 °C.


2010 ◽  
Vol 23 (19) ◽  
pp. 5151-5162 ◽  
Author(s):  
Adam Hugh Monahan

Abstract Air–sea exchanges of momentum, energy, and material substances of fundamental importance to the variability of the climate system are mediated by the character of the turbulence in the atmospheric and oceanic boundary layers. Sea surface winds influence, and are influenced by, these fluxes. The probability density function (pdf) of sea surface wind speeds p(w) is a mathematical object describing the variability of surface winds that arises from the physics of the turbulent atmospheric planetary boundary layer. Previous mechanistic models of the pdf of sea surface wind speeds have considered the momentum budget of an atmospheric layer of fixed thickness and neutral stratification. The present study extends this analysis, using an idealized model to consider the influence of boundary layer thickness variations and nonneutral surface stratification on p(w). It is found that surface stratification has little direct influence on p(w), while variations in boundary layer thickness bring the predictions of the model into closer agreement with the observations. Boundary layer thickness variability influences the shape of p(w) in two ways: through episodic downward mixing of momentum into the boundary layer from the free atmosphere and through modulation of the importance (relative to other tendencies) of turbulent momentum fluxes at the surface and the boundary layer top. It is shown that the second of these influences dominates over the first.


Sign in / Sign up

Export Citation Format

Share Document