Computationally Efficient Mean-Shift Parallel Segmentation Algorithm for High-Resolution Remote Sensing Images

2018 ◽  
Vol 46 (11) ◽  
pp. 1805-1814
Author(s):  
Tianjun Wu ◽  
Liegang Xia ◽  
Jiancheng Luo ◽  
Xiaocheng Zhou ◽  
Xiaodong Hu ◽  
...  
Optik ◽  
2014 ◽  
Vol 125 (19) ◽  
pp. 5588-5595 ◽  
Author(s):  
Chao Wang ◽  
Ai-Ye Shi ◽  
Xin Wang ◽  
Fang-ming Wu ◽  
Feng-Chen Huang ◽  
...  

Author(s):  
Ye Lv ◽  
Guofeng Wang ◽  
Xiangyun Hu

At present, remote sensing technology is the best weapon to get information from the earth surface, and it is very useful in geo- information updating and related applications. Extracting road from remote sensing images is one of the biggest demand of rapid city development, therefore, it becomes a hot issue. Roads in high-resolution images are more complex, patterns of roads vary a lot, which becomes obstacles for road extraction. In this paper, a machine learning based strategy is presented. The strategy overall uses the geometry features, radiation features, topology features and texture features. In high resolution remote sensing images, the images cover a great scale of landscape, thus, the speed of extracting roads is slow. So, roads’ ROIs are firstly detected by using Houghline detection and buffering method to narrow down the detecting area. As roads in high resolution images are normally in ribbon shape, mean-shift and watershed segmentation methods are used to extract road segments. Then, Real Adaboost supervised machine learning algorithm is used to pick out segments that contain roads’ pattern. At last, geometric shape analysis and morphology methods are used to prune and restore the whole roads’ area and to detect the centerline of roads.


Author(s):  
Ye Lv ◽  
Guofeng Wang ◽  
Xiangyun Hu

At present, remote sensing technology is the best weapon to get information from the earth surface, and it is very useful in geo- information updating and related applications. Extracting road from remote sensing images is one of the biggest demand of rapid city development, therefore, it becomes a hot issue. Roads in high-resolution images are more complex, patterns of roads vary a lot, which becomes obstacles for road extraction. In this paper, a machine learning based strategy is presented. The strategy overall uses the geometry features, radiation features, topology features and texture features. In high resolution remote sensing images, the images cover a great scale of landscape, thus, the speed of extracting roads is slow. So, roads’ ROIs are firstly detected by using Houghline detection and buffering method to narrow down the detecting area. As roads in high resolution images are normally in ribbon shape, mean-shift and watershed segmentation methods are used to extract road segments. Then, Real Adaboost supervised machine learning algorithm is used to pick out segments that contain roads’ pattern. At last, geometric shape analysis and morphology methods are used to prune and restore the whole roads’ area and to detect the centerline of roads.


Author(s):  
X. Zhang ◽  
C. K. Zhang ◽  
H. M. Li ◽  
Z. Luo

Abstract. Aiming at the road extraction in high-resolution remote sensing images, the stroke width transformation algorithm is greatly affected by surrounding objects, and it is impossible to directly obtain high-precision road information. A new road extraction method combining stroke width transformation and mean drift is proposed. In order to reduce road holes and discontinuities, and preserve better edge information, the algorithm first performs denoising preprocessing by means of median filtering to the pre-processed image. Then, the mean shift algorithm is used for image segmentation. The adjacent parts of the image with similar texture and spectrum are treated as the same class, and then the fine areas less than the maximum stroke width are reduced. On the basis , the road information is extracted by the stroke width transformation algorithm, and the information also contains a small amount of interference information such as spots (non-road). In order to further improve road extraction accuracy and reduce speckle and non-road area interference, the basic operations and combinations in mathematical morphology are used to optimize it. The experimental results show that the proposed algorithm can accurately extract the roads on high-resolution remote sensing images, and the better the road features, the better the extraction effect. However, the applicability of the algorithm is greatly affected by the surrounding objects.


Sign in / Sign up

Export Citation Format

Share Document