scholarly journals Development and Application of Earth Observation Based Machine Learning Methods for Characterizing Forest and Land Cover Change in Dilijan National Park of Armenia between 1991 and 2019

2021 ◽  
Vol 13 (15) ◽  
pp. 2942
Author(s):  
Nathalie Morin ◽  
Antoine Masse ◽  
Christophe Sannier ◽  
Martin Siklar ◽  
Norman Kiesslich ◽  
...  

Dilijan National Park is one of the most important national parks of Armenia, established in 2002 to protect its rich biodiversity of flora and fauna and to prevent illegal logging. The aim of this study is to provide first, a mapping of forest degradation and deforestation, and second, of land cover/land use changes every 5 years over a 28-year monitoring cycle from 1991 to 2019, using Sentinel-2 and Landsat time series and Machine Learning methods. Very High Spatial Resolution imagery was used for calibration and validation purposes of forest density modelling and related changes. Correlation coefficient R2 between forest density map and reference values ranges from 0.70 for the earliest epoch to 0.90 for the latest one. Land cover/land use classification yield good results with most classes showing high users’ and producers’ accuracies above 80%. Although forest degradation and deforestation which initiated about 30 years ago was restrained thanks to protection measures, anthropogenic pressure remains a threat with the increase in settlements, tourism, or agriculture. This case study can be used as a decision-support tool for the Armenian Government for sustainable forest management and policies and serve as a model for a future nationwide forest monitoring system.

2021 ◽  
Vol 13 (5) ◽  
pp. 974
Author(s):  
Lorena Alves Santos ◽  
Karine Ferreira ◽  
Michelle Picoli ◽  
Gilberto Camara ◽  
Raul Zurita-Milla ◽  
...  

The use of satellite image time series analysis and machine learning methods brings new opportunities and challenges for land use and cover changes (LUCC) mapping over large areas. One of these challenges is the need for samples that properly represent the high variability of land used and cover classes over large areas to train supervised machine learning methods and to produce accurate LUCC maps. This paper addresses this challenge and presents a method to identify spatiotemporal patterns in land use and cover samples to infer subclasses through the phenological and spectral information provided by satellite image time series. The proposed method uses self-organizing maps (SOMs) to reduce the data dimensionality creating primary clusters. From these primary clusters, it uses hierarchical clustering to create subclusters that recognize intra-class variability intrinsic to different regions and periods, mainly in large areas and multiple years. To show how the method works, we use MODIS image time series associated to samples of cropland and pasture classes over the Cerrado biome in Brazil. The results prove that the proposed method is suitable for identifying spatiotemporal patterns in land use and cover samples that can be used to infer subclasses, mainly for crop-types.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1022 ◽  
Author(s):  
Binh Thai Pham ◽  
Abolfazl Jaafari ◽  
Mohammadtaghi Avand ◽  
Nadhir Al-Ansari ◽  
Tran Dinh Du ◽  
...  

Predicting and mapping fire susceptibility is a top research priority in fire-prone forests worldwide. This study evaluates the abilities of the Bayes Network (BN), Naïve Bayes (NB), Decision Tree (DT), and Multivariate Logistic Regression (MLP) machine learning methods for the prediction and mapping fire susceptibility across the Pu Mat National Park, Nghe An Province, Vietnam. The modeling methodology was formulated based on processing the information from the 57 historical fires and a set of nine spatially explicit explanatory variables, namely elevation, slope degree, aspect, average annual temperate, drought index, river density, land cover, and distance from roads and residential areas. Using the area under the receiver operating characteristic curve (AUC) and seven other performance metrics, the models were validated in terms of their abilities to elucidate the general fire behaviors in the Pu Mat National Park and to predict future fires. Despite a few differences between the AUC values, the BN model with an AUC value of 0.96 was dominant over the other models in predicting future fires. The second best was the DT model (AUC = 0.94), followed by the NB (AUC = 0.939), and MLR (AUC = 0.937) models. Our robust analysis demonstrated that these models are sufficiently robust in response to the training and validation datasets change. Further, the results revealed that moderate to high levels of fire susceptibilities are associated with ~19% of the Pu Mat National Park where human activities are numerous. This study and the resultant susceptibility maps provide a basis for developing more efficient fire-fighting strategies and reorganizing policies in favor of sustainable management of forest resources.


2019 ◽  
Vol 45 (2) ◽  
pp. 163-175
Author(s):  
Mohammad Imangholiloo ◽  
Jussi Rasinmäki ◽  
Yrjö Rauste ◽  
Markus Holopainen

Author(s):  
I. Kaczmarek ◽  
A. Iwaniak ◽  
A. Świetlicka ◽  
M. Piwowarczyk ◽  
F. Harvey

Abstract. Spatial development plans provide an important information on future land development capabilities. Unfortunately, at the moment access to planning information in Poland is limited. Despite many initiatives taken to standardize planning documents, the standard for recording plans has not yet been developed. Each of the planning areas has a symbol and a category of land use, which is different in each of the plans. For this reason, it is very difficult to carry out an analysis enabling aggregation of all areas with a specific, the same development function.The authors in the article conduct experiments aimed at using machine learning methods for the needs of processing the text part of plans and their classification. The main aim was to find the best method for grouping texts of zones with the same land use. The experiment consists in an attempt to automatically classify the texts of findings for individual areas into the 10 defined categories of land use. Thanks to this, it is possible to predict the future land use function for a specific zone text regulation and aggregate all zones with specific land use type.In the proposed solution for the classification problem of heterogeneous planning information authors used k-means algorithm and artificial neural networks. The main challenge for this solution, however, was not the design of the classification tool but rather the preprocessing of the text. In this paper an approach for text preprocessing as well as selected methods of text classification is presented. The results of the work indicate greater use of CNN's usability to solve the problem presented. K-means clustering produces clusters, in which texts are not grouped according to land use function, which is not useful in the context of zones aggregation.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1147 ◽  
Author(s):  
Chunjie Feng ◽  
Xiaotong Zhang ◽  
Yu Wei ◽  
Weiyu Zhang ◽  
Ning Hou ◽  
...  

The downward longwave radiation (Ld, 4–100 μm) is a major component of research for the surface radiation energy budget and balance. In this study, we applied five machine learning methods, namely artificial neural network (ANN), support vector regression (SVR), gradient boosting regression tree (GBRT), random forest (RF), and multivariate adaptive regression spline (MARS), to estimate Ld using ground measurements collected from 27 Baseline Surface Radiation Network (BSRN) stations. Ld measurements in situ were used to validate the accuracy of Ld estimation models on daily and monthly time scales. A comparison of the results demonstrated that the estimates on the basis of the GBRT method had the highest accuracy, with an overall root-mean-square error (RMSE) of 17.50 W m−2 and an R value of 0.96 for the test dataset on a daily time scale. These values were 11.19 W m−2 and 0.98, respectively, on a monthly time scale. The effects of land cover and elevation were further studied to comprehensively evaluate the performance of each machine learning method. All machine learning methods achieved better results over the grass land cover type but relatively worse results over the tundra. GBRT, RF, and MARS methods were found to show good performance at both the high- and low-altitude sites.


Sign in / Sign up

Export Citation Format

Share Document