scholarly journals Evaluating the Applicability of Thermal Infrared Remote Sensing in Estimating Water Potential of the Karst Aquifer: A Case Study in North Adriatic, Croatia

2021 ◽  
Vol 13 (18) ◽  
pp. 3737
Author(s):  
Bojana Horvat ◽  
Josip Rubinić

One of the most prominent tourist destinations in the Adriatic coast, the city of Opatija, is facing a problem concerning seasonal drinking water shortages. The existing water resources are no longer sufficient, and attention is being given to alternative resources such as the underlying karstic aquifer and several coastal springs in the city itself. However, the water potential of the area still cannot be estimated due to the insufficient hydrological data. The goal of this research was to evaluate the use of thermal infrared (TIR) remote sensing as the source of valuable information that will improve our understanding of the groundwater discharge dynamics. Ten Landsat ETM+ (enhanced thematic mapper plus) and two Landsat TM (thematic mapper) images of the north Adriatic, recorded during 1999–2004 at the same time as the field discharge measurements, were used to derive sea surface temperature (SST) and to analyze freshwater outflows seen as the thermal anomaly in the TIR images. The approach is based on finding the functional relationship between the size of the freshwater thermal signatures and the measured discharge data, and to estimate the water potential of the underlying aquifer. It also involved analyzing the possible connection between the adjusted size of the spring’s thermal signatures and groundwater level fluctuations in the deeper karst hinterland. The proposed methodology resulted in realistic discharge estimates, as well as a good fit between thermal anomalies with measured discharges and the groundwater level. It should be emphasized that the results are site specific and based on a limited data set. However, they confirm that the proposed method can provide additional information on groundwater outflow dynamics and coastal springs’ freshwater quantification.

2021 ◽  
Vol 131 ◽  
pp. 126389
Author(s):  
Mengjie Hou ◽  
Fei Tian ◽  
S. Ortega-Farias ◽  
C. Riveros-Burgos ◽  
Tong Zhang ◽  
...  

2012 ◽  
Vol 6-7 ◽  
pp. 128-134
Author(s):  
Yuan Lin ◽  
Zhong Yang Guo ◽  
Peng Peng Kan ◽  
Shu Feng Ye

Thermal power technology has brought great convenience for human electricity energy demand, but thermal discharge from thermal power plants has caused great harm to the coastal environment. Therefore, it’s important to strengthen the monitoring of thermal pollution from power plants for guarantee the normal operation of coastal environment and ecological system. Thermal infrared remote sensing technology provides a new measure for monitoring the thermal discharge. In this paper, we use mono-window algorithm and Landsat thermal infrared data to retrieved the sea surface temperature around Xiangshan Power Plants, and achieved the result of 1~5.4°C temperature rise in 106.52km2 in Xiangshan Harbor, revealed the spatial distribution regularities of thermal discharge and discussed the influence of thermal discharge on costal environment.


Sign in / Sign up

Export Citation Format

Share Document