scholarly journals Few-Shot Object Detection on Remote Sensing Images via Shared Attention Module and Balanced Fine-Tuning Strategy

2021 ◽  
Vol 13 (19) ◽  
pp. 3816
Author(s):  
Xu Huang ◽  
Bokun He ◽  
Ming Tong ◽  
Dingwen Wang ◽  
Chu He

Few-shot object detection is a recently emerging branch in the field of computer vision. Recent research studies have proposed several effective methods for object detection with few samples. However, their performances are limited when applied to remote sensing images. In this article, we specifically analyze the characteristics of remote sensing images and propose a few-shot fine-tuning network with a shared attention module (SAM) to adapt to detecting remote sensing objects, which have large size variations. In our SAM, multi-attention maps are computed in the base training stage and shared with the feature extractor in the few-shot fine-tuning stage as prior knowledge to help better locate novel class objects with few samples. Moreover, we design a new few-shot fine-tuning stage with a balanced fine-tuning strategy (BFS), which helps in mitigating the severe imbalance between the number of novel class samples and base class samples caused by the few-shot settings to improve the classification accuracy. We have conducted experiments on two remote sensing datasets (NWPU VHR-10 and DIOR), and the excellent results demonstrate that our method makes full use of the advantages of few-shot learning and the characteristics of remote sensing images to enhance the few-shot detection performance.

2019 ◽  
Vol 9 (6) ◽  
pp. 1130 ◽  
Author(s):  
Eric Wang ◽  
Yueping Li ◽  
Zhe Nie ◽  
Juntao Yu ◽  
Zuodong Liang ◽  
...  

With the rapid growth of high-resolution remote sensing image-based applications, one of the fundamental problems in managing the increasing number of remote sensing images is automatic object detection. In this paper, we present a fusion feature-based deep learning approach to detect objects in high-resolution remote sensing images. It employs fine-tuning from ImageNet as a pre-training model to address the challenge of it lacking a large amount of training datasets in remote sensing. Besides, we improve the binarized normed gradients algorithm by multiple weak feature scoring models for candidate window selection and design a deep fusion feature extraction method with the context feature and object feature. Experiments are performed on different sizes of high-resolution optical remote sensing images. The results show that our model is better than regular models, and the average detection accuracy is 8.86% higher than objNet.


Author(s):  
S. Jiang ◽  
H. Zhao ◽  
W. Wu ◽  
Q. Tan

High resolution remote sensing (HRRS) images scene classification aims to label an image with a specific semantic category. HRRS images contain more details of the ground objects and their spatial distribution patterns than low spatial resolution images. Scene classification can bridge the gap between low-level features and high-level semantics. It can be applied in urban planning, target detection and other fields. This paper proposes a novel framework for HRRS images scene classification. This framework combines the convolutional neural network (CNN) and XGBoost, which utilizes CNN as feature extractor and XGBoost as a classifier. Then, this framework is evaluated on two different HRRS images datasets: UC-Merced dataset and NWPU-RESISC45 dataset. Our framework achieved satisfying accuracies on two datasets, which is 95.57 % and 83.35 % respectively. From the experiments result, our framework has been proven to be effective for remote sensing images classification. Furthermore, we believe this framework will be more practical for further HRRS scene classification, since it costs less time on training stage.


2021 ◽  
Vol 42 (17) ◽  
pp. 6670-6691
Author(s):  
Qiuyu Guan ◽  
Zhenshen Qu ◽  
Ming Zeng ◽  
Jianxiong Shen ◽  
Jingda Du

2021 ◽  
Vol 13 (9) ◽  
pp. 1854
Author(s):  
Syed Muhammad Arsalan Bashir ◽  
Yi Wang

This paper deals with detecting small objects in remote sensing images from satellites or any aerial vehicle by utilizing the concept of image super-resolution for image resolution enhancement using a deep-learning-based detection method. This paper provides a rationale for image super-resolution for small objects by improving the current super-resolution (SR) framework by incorporating a cyclic generative adversarial network (GAN) and residual feature aggregation (RFA) to improve detection performance. The novelty of the method is threefold: first, a framework is proposed, independent of the final object detector used in research, i.e., YOLOv3 could be replaced with Faster R-CNN or any object detector to perform object detection; second, a residual feature aggregation network was used in the generator, which significantly improved the detection performance as the RFA network detected complex features; and third, the whole network was transformed into a cyclic GAN. The image super-resolution cyclic GAN with RFA and YOLO as the detection network is termed as SRCGAN-RFA-YOLO, which is compared with the detection accuracies of other methods. Rigorous experiments on both satellite images and aerial images (ISPRS Potsdam, VAID, and Draper Satellite Image Chronology datasets) were performed, and the results showed that the detection performance increased by using super-resolution methods for spatial resolution enhancement; for an IoU of 0.10, AP of 0.7867 was achieved for a scale factor of 16.


2021 ◽  
Vol 30 ◽  
pp. 1305-1317
Author(s):  
Qijian Zhang ◽  
Runmin Cong ◽  
Chongyi Li ◽  
Ming-Ming Cheng ◽  
Yuming Fang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document