scholarly journals Testing the Application of Terrestrial Laser Scanning to Measure Forest Canopy Gap Fraction

2013 ◽  
Vol 5 (6) ◽  
pp. 3037-3056 ◽  
Author(s):  
F. Ramirez ◽  
Richard Armitage ◽  
F. Danson
2007 ◽  
Vol 4 (1) ◽  
pp. 157-160 ◽  
Author(s):  
F. Mark Danson ◽  
David Hetherington ◽  
Felix Morsdorf ◽  
Benjamin Koetz ◽  
Britta Allgower

2014 ◽  
Vol 194 ◽  
pp. 230-240 ◽  
Author(s):  
Renato Cifuentes ◽  
Dimitry Van der Zande ◽  
Jamshid Farifteh ◽  
Christian Salas ◽  
Pol Coppin

2018 ◽  
Vol 210 ◽  
pp. 452-472 ◽  
Author(s):  
Lixia Ma ◽  
Guang Zheng ◽  
Xiaofei Wang ◽  
Shiming Li ◽  
Yi Lin ◽  
...  

2015 ◽  
Vol 5 (4) ◽  
pp. 114-122
Author(s):  
Стариков ◽  
Aleksandr Starikov ◽  
Батурин ◽  
Kirill Baturin

Now for the decision of tasks of monitoring and evaluation of forest plantations the use of methods and means of laser scanning is one of the most act-sexual and priorities. Laser scanning can be performed independently, or in combination with digital aerial and space photos and video, and can also be carried out ground research on the sample areas. A number of indicators laser scanning is superior to other, currently known, remote evaluation methods qualitative and quantitative characteristics of the forest Fund Laser scanning of forest cover based on the use of modern tech-nologies of digital photogrammetry and geoinformation systems, as well as methods of digital processing and multidimensional modeling of the reflected signals. The article provides analysis of modern methods and means of aerial and terrestrial laser scanning of forest stands. The use of air-borne laser scanning will allow achieving high precision in the determination of basic inventory pa-rameters that are comparable to land-based taxation. Main advantages of laser ranging to other me-thods of monitoring of forest plantations is that the laser beam is able to penetrate the forest canopy, thereby scanning all the tiers of the stand. High density scanning (5-10 points per 1 m2) allows ob-taining three-dimensional images of individual trees with high accuracy. The obtained three-dimensional model requires no processing, unlike aerospace methods of remote sensing that are as-sociated with long and arduous races-encryption of the images. Terrestrial laser scanning, in fact, similar to traditional photogrammetric methods, but it allows you to get the coordinates from one point of standing with the possibility of control measurements directly in the field, while providing higher measurement accuracy, compared with photogrammetric methods.


2021 ◽  
Vol 875 (1) ◽  
pp. 012083
Author(s):  
N Begliarov ◽  
E Mitrofanov ◽  
V Kiseleva

Abstract Modern geodetic technologies of gathering three-dimensional spatial data incorporate terrestrial laser scanning and aerial photo survey from unmanned aerial vehicles. The combination of these technologies and joint result of survey provide the data of 3D point model and accurate information on trunks and crowns of individual trees. The paper examines the experiment with the application of method of formation of 3D measuring scene in the form of dense cloud of points combining the results of terrestrial laser scanning and materials of photogrammetric processing of UAV-provided data. The method eliminates basic shortcomings of each technology, enhances their advantages, and opens the way to the compilation of more representative 3D measuring scenes. A specific advantage of the method is the outcropping of detailed information on the form, size and condition of individual tree crowns. This option finds a practical application in landscape evaluation and design, remote measuring of trunk parameters excluding the felling of model trees for the compilation of regional timber account tables. The closest perspectives of method development are related to increasing the accuracy of combined survey by specifying flight missions and working with the light regime under forest canopy.


Sign in / Sign up

Export Citation Format

Share Document