scholarly journals Evaluating Consistency of Snow Water Equivalent Retrievals from Passive Microwave Sensors over the North Central U. S.: SSM/I vs. SSMIS and AMSR-E vs. AMSR2

2017 ◽  
Vol 9 (5) ◽  
pp. 465 ◽  
Author(s):  
◽  
◽  
Author(s):  
Ronny Schroeder ◽  
Jennifer M. Jacobs ◽  
Eunsang Cho ◽  
Carrie M. Olheiser ◽  
Michael M. DeWeese ◽  
...  

2021 ◽  
Author(s):  
Colleen Mortimer ◽  
Lawrence Mudryk ◽  
Chris Derksen ◽  
Kari Luojus ◽  
Pinja Venalainen ◽  
...  

<p>The European Space Agency Snow CCI+ project provides global homogenized long time series of daily snow extent and snow water equivalent (SWE). The Snow CCI SWE product is built on the Finish Meteorological Institute's GlobSnow algorithm, which combines passive microwave data with in situ snow depth information to estimate SWE. The CCI SWE product improves upon previous versions of GlobSnow through targeted changes to the spatial resolution, ancillary data, and snow density parameterization.</p><p>Previous GlobSnow SWE products used a constant snow density of 0.24 kg m<sup>-3</sup> to convert snow depth to SWE. The CCI SWE product applies spatially and temporally varying density fields, derived by krigging in situ snow density information from historical snow transects to correct biases in estimated SWE. Grid spacing was improved from 25 km to 12.5 km by applying an enhanced spatial resolution microwave brightness temperature dataset. We assess step-wise how each of these targeted changes acts to improve or worsen the product by evaluating with snow transect measurements and comparing hemispheric snow mass and trend differences.</p><p>Together, when compared to GlobSnow v3, these changes improved RMSE by ~5 cm and correlation by ~0.1 against a suite of snow transect measurements from Canada, Finland, and Russia. Although the hemispheric snow mass anomalies of CCI SWE and GlobSnow v3 are similar, there are sizeable differences in the climatological SWE, most notably a one month delay in the timing of peak SWE and lower SWE during the accumulation season. These shifts were expected because the variable snow density is lower than the former fixed value of 0.24 kg m<sup>-3</sup> early in the snow season, but then increases over the course of the snow season. We also examine intermediate products to determine the relative improvements attributable solely to the increased spatial resolution versus changes due to the snow density parameterizations. Such systematic evaluations are critical to directing future product development.</p>


2013 ◽  
Vol 17 (12) ◽  
pp. 5127-5139 ◽  
Author(s):  
G. A. Artan ◽  
J. P. Verdin ◽  
R. Lietzow

Abstract. We illustrate the ability to monitor the status of snow water content over large areas by using a spatially distributed snow accumulation and ablation model that uses data from a weather forecast model in the upper Colorado Basin. The model was forced with precipitation fields from the National Weather Service (NWS) Multi-sensor Precipitation Estimator (MPE) and the Tropical Rainfall Measuring Mission (TRMM) data-sets; remaining meteorological model input data were from NOAA's Global Forecast System (GFS) model output fields. The simulated snow water equivalent (SWE) was compared to SWEs from the Snow Data Assimilation System (SNODAS) and SNOwpack TELemetry system (SNOTEL) over a region of the western US that covers parts of the upper Colorado Basin. We also compared the SWE product estimated from the special sensor microwave imager (SSM/I) and scanning multichannel microwave radiometer (SMMR) to the SNODAS and SNOTEL SWE data-sets. Agreement between the spatial distributions of the simulated SWE with MPE data was high with both SNODAS and SNOTEL. Model-simulated SWE with TRMM precipitation and SWE estimated from the passive microwave imagery were not significantly correlated spatially with either SNODAS or the SNOTEL SWE. Average basin-wide SWE simulated with the MPE and the TRMM data were highly correlated with both SNODAS (r = 0.94 and r = 0.64; d.f. = 14 – d.f. = degrees of freedom) and SNOTEL (r = 0.93 and r = 0.68; d.f. = 14). The SWE estimated from the passive microwave imagery was significantly correlated with the SNODAS SWE (r = 0.55, d.f. = 9, p = 0.05) but was not significantly correlated with the SNOTEL-reported SWE values (r = 0.45, d.f. = 9, p = 0.05).The results indicate the applicability of the snow energy balance model for monitoring snow water content at regional scales when coupled with meteorological data of acceptable quality. The two snow water contents from the microwave imagery (SMMR and SSM/I) and the Utah Energy Balance forced with the TRMM precipitation data were found to be unreliable sources for mapping SWE in the study area; both data sets lacked discernible variability of snow water content between sites as seen in the SNOTEL and SNODAS SWE data. This study will contribute to better understanding the adequacy of data from weather forecast models, TRMM, and microwave imagery for monitoring status of the snow water content.


Sign in / Sign up

Export Citation Format

Share Document