scholarly journals The Effect of Different Global Navigation Satellite System Methods on Positioning Accuracy in Elite Alpine Skiing

Sensors ◽  
2014 ◽  
Vol 14 (10) ◽  
pp. 18433-18453 ◽  
Author(s):  
Matthias Gilgien ◽  
Jörg Spörri ◽  
Philippe Limpach ◽  
Alain Geiger ◽  
Erich Müller
Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5563
Author(s):  
Xianqiang Cui ◽  
Tianhang Gao ◽  
Changsheng Cai

The existence of colored noise in kinematic positioning will greatly degrade the accuracy of position solutions. This paper proposes a Kalman filter-based quad-constellation global navigation satellite system (GNSS) navigation algorithm with colored noise mitigation. In this algorithm, the observation colored noise and state colored noise models are established by utilizing their residuals in the past epochs, and then the colored noise is predicted using the models for mitigation in the current epoch in the integrated Global Positioning System (GPS)/GLObal NAvigation Satellite System (GLONASS)/BeiDou Navigation Satellite System (BDS)/Galileo navigation. Kinematic single point positioning (SPP) experiments under different satellite visibility conditions and road patterns are conducted to evaluate the effect of colored noise on the positioning accuracy for the quad-constellation combined navigation. Experiment results show that the colored noise model can fit the colored noise more effectively in the case of good satellite visibility. As a result, the positioning accuracy improvement is more significant after handling the colored noise. The three-dimensional positioning accuracy can be improved by 25.1%. Different satellite elevation cut-off angles of 10º, 20º and 30º are set to simulate different satellite visibility situations. Results indicate that the colored noise is decreased with the increment of the elevation cut-off angle. Consequently, the improvement of the SPP accuracy after handling the colored noise is gradually reduced from 27.3% to 16.6%. In the cases of straight and curved roads, the quad-constellation GNSS-SPP accuracy can be improved by 22.1% and 25.7% after taking the colored noise into account. The colored noise can be well-modeled and mitigated in both the straight and curved road conditions.


2022 ◽  
Vol 12 (2) ◽  
pp. 693
Author(s):  
Dorijan Radočaj ◽  
Ivan Plaščak ◽  
Goran Heffer ◽  
Mladen Jurišić

The high-precision positioning and navigation of agricultural machinery represent a backbone for precision agriculture, while its worldwide implementation is in rapid growth. Previous studies improved low-cost global navigation satellite system (GNSS) hardware solutions and fused GNSS data with complementary sources, but there is still no affordable and flexible framework for positioning accuracy assessment of agricultural machinery. Such a low-cost method was proposed in this study, simulating the actual movement of the agricultural machinery during agrotechnical operations. Four of the most commonly used GNSS corrections in Croatia were evaluated in two repetitions: Croatian Positioning System (CROPOS), individual base station, Satellite-based Augmentation Systems (SBASs), and an absolute positioning method using a smartphone. CROPOS and base station produced the highest mean GNSS positioning accuracy of 2.4 and 2.9 cm, respectively, but both of these corrections produced lower accuracy than declared. All evaluated corrections produced significantly different median values in two repetitions, representing inconsistency of the positioning accuracy regarding field conditions. While the proposed method allowed flexible and effective application in the field, future studies will be directed towards the reduction of the operator’s subjective impact, mainly by implementing autosteering solutions in agricultural machinery.


2021 ◽  
Vol 17 (5) ◽  
pp. 155014772110167
Author(s):  
Fan Qin ◽  
Linxia Fu ◽  
Yuanqing Wang ◽  
Yi Mao

Global navigation satellite system is indispensable to provide positioning, navigation, and timing information for pedestrians and vehicles in location-based services. However, tree canopies, although considered as valuable city infrastructures in urban areas, adversely degrade the accuracy of global navigation satellite system positioning as they attenuate the satellite signals. This article proposes a bagging tree-based global navigation satellite system pseudorange error prediction algorithm, by considering two variables, including carrier to noise C/ N0 and elevation angle θe to improve the global navigation satellite system positioning accuracy in the foliage area. The positioning accuracy improvement is then obtained by applying the predicted pseudorange error corrections. The experimental results shows that as the stationary character of the geostationary orbit satellites, the improvement of the prediction accuracy of the BeiDou navigation satellite system solution (85.42% in light foliage and 83.99% in heavy foliage) is much higher than that of the global positioning system solution (70.77% in light foliage and 73.61% in heavy foliage). The positioning error values in east, north, and up coordinates are improved by the proposed algorithm, especially a significant decrease in up direction. Moreover, the improvement rate of the three-dimensional root mean square error of positioning accuracy in light foliage area test is 86% for BeiDou navigation satellite system/global positioning system combination solutions, while the corresponding improvement rate is 82% for the heavy foliage area test.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Xingxing Li ◽  
Xuanbin Wang ◽  
Jianchi Liao ◽  
Xin Li ◽  
Shengyu Li ◽  
...  

AbstractBecause of its high-precision, low-cost and easy-operation, Precise Point Positioning (PPP) becomes a potential and attractive positioning technique that can be applied to self-driving cars and drones. However, the reliability and availability of PPP will be significantly degraded in the extremely difficult conditions where Global Navigation Satellite System (GNSS) signals are blocked frequently. Inertial Navigation System (INS) has been integrated with GNSS to ameliorate such situations in the last decades. Recently, the Visual-Inertial Navigation Systems (VINS) with favorable complementary characteristics is demonstrated to realize a more stable and accurate local position estimation than the INS-only. Nevertheless, the system still must rely on the global positions to eliminate the accumulated errors. In this contribution, we present a semi-tight coupling framework of multi-GNSS PPP and Stereo VINS (S-VINS), which achieves the bidirectional location transfer and sharing in two separate navigation systems. In our approach, the local positions, produced by S-VINS are integrated with multi-GNSS PPP through a graph-optimization based method. Furthermore, the accurate forecast positions with S-VINS are fed back to assist PPP in GNSS-challenged environments. The statistical analysis of a GNSS outage simulation test shows that the S-VINS mode can effectively suppress the degradation of positioning accuracy compared with the INS-only mode. We also carried out a vehicle-borne experiment collecting multi-sensor data in a GNSS-challenged environment. For the complex driving environment, the PPP positioning capability is significantly improved with the aiding of S-VINS. The 3D positioning accuracy is improved by 49.0% for Global Positioning System (GPS), 40.3% for GPS + GLOANSS (Global Navigation Satellite System), 45.6% for GPS + BDS (BeiDou navigation satellite System), and 51.2% for GPS + GLONASS + BDS. On this basis, the solution with the semi-tight coupling scheme of multi-GNSS PPP/S-VINS achieves the improvements of 41.8–60.6% in 3D positioning accuracy compared with the multi-GNSS PPP/INS solutions.


2018 ◽  
Vol 71 (6) ◽  
pp. 1363-1380 ◽  
Author(s):  
Ke Su ◽  
Shuanggen Jin

Tropospheric delay is one of the main error sources in Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP). Zenith Hydrostatic Delay (ZHD) accounts for 90% of the total delay. This research focuses on the improvements of ZHD from tropospheric models and real meteorological data on the PPP solution. Multi-GNSS PPP experiments are conducted using the datasets collected at Multi-GNSS Experiments (MGEX) network stations. The results show that the positioning accuracy of different GNSS PPP solutions using the meteorological data for ZHD correction can achieve an accuracy level of several millimetres. The average convergence time of a PPP solution for the BeiDou System (BDS), the Global Positioning System (GPS), Global Navigation Satellite System of Russia (GLONASS), BDS+GPS, and BDS+GPS+GLONASS+Galileo are 55·89 min, 25·88 min, 33·30 min, 20·50 min and 15·71 min, respectively. The results also show that atmospheric parameters provided by real meteorological data have little effect on the horizontal components of positioning compared to the meteorological model, while in the vertical component, the positioning accuracy is improved by 90·6%, 33·0%, 22·2% and 19·8% compared with the standard atmospheric model, University of New Brunswick (UNB3m) model, Global Pressure and Temperature (GPT) model, and Global Pressure and Temperature-2 (GPT2) model and the convergence times are decreased 51·2%, 32·8%, 32·5%, and 32·3%, respectively.


Sensors ◽  
2013 ◽  
Vol 13 (8) ◽  
pp. 9821-9835 ◽  
Author(s):  
Matthias Gilgien ◽  
Jörg Spörri ◽  
Julien Chardonnens ◽  
Josef Kröll ◽  
Erich Müller

2019 ◽  
Vol 15 (3) ◽  
pp. 155014771983442
Author(s):  
Hongwei Zhao ◽  
Yue Yan ◽  
Xiaozhu Shi

Global navigation satellite system signals are easily distorted by the interferences or disturbances, and global navigation satellite system receivers cannot offer continuous effective navigation results in challenging environments. As a representative regional augmentation technology, pseudolite has the potential to provide accurate positioning service to satisfy specific performance requirements in various applications. In this article, we developed a dynamic localization network based on pseudolite technology for regional augmentation navigation purpose. First, the collaborative positioning algorithm is given, and the architecture of localization system is proposed. Then the error sources of localization system are analyzed for performance evaluation. Finally, the proposed system is verified by experiments conducted in both static and kinenatic scenarios. The experiment results demonstrate that the positioning accuracy of the proposed localization system is nearly 10 m, which is close to the global navigation satellite system single-point positioning accuracy. Therefore, it can be used for emergency dynamic positioning of critical areas under the global navigation satellite system denial environments.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fahad Alhomayani ◽  
Mohammad H. Mahoor

AbstractIn recent years, fingerprint-based positioning has gained researchers’ attention since it is a promising alternative to the Global Navigation Satellite System and cellular network-based localization in urban areas. Despite this, the lack of publicly available datasets that researchers can use to develop, evaluate, and compare fingerprint-based positioning solutions constitutes a high entry barrier for studies. As an effort to overcome this barrier and foster new research efforts, this paper presents OutFin, a novel dataset of outdoor location fingerprints that were collected using two different smartphones. OutFin is comprised of diverse data types such as WiFi, Bluetooth, and cellular signal strengths, in addition to measurements from various sensors including the magnetometer, accelerometer, gyroscope, barometer, and ambient light sensor. The collection area spanned four dispersed sites with a total of 122 reference points. Each site is different in terms of its visibility to the Global Navigation Satellite System and reference points’ number, arrangement, and spacing. Before OutFin was made available to the public, several experiments were conducted to validate its technical quality.


Sign in / Sign up

Export Citation Format

Share Document