Improvement of Multi-GNSS Precise Point Positioning Performances with Real Meteorological Data

2018 ◽  
Vol 71 (6) ◽  
pp. 1363-1380 ◽  
Author(s):  
Ke Su ◽  
Shuanggen Jin

Tropospheric delay is one of the main error sources in Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP). Zenith Hydrostatic Delay (ZHD) accounts for 90% of the total delay. This research focuses on the improvements of ZHD from tropospheric models and real meteorological data on the PPP solution. Multi-GNSS PPP experiments are conducted using the datasets collected at Multi-GNSS Experiments (MGEX) network stations. The results show that the positioning accuracy of different GNSS PPP solutions using the meteorological data for ZHD correction can achieve an accuracy level of several millimetres. The average convergence time of a PPP solution for the BeiDou System (BDS), the Global Positioning System (GPS), Global Navigation Satellite System of Russia (GLONASS), BDS+GPS, and BDS+GPS+GLONASS+Galileo are 55·89 min, 25·88 min, 33·30 min, 20·50 min and 15·71 min, respectively. The results also show that atmospheric parameters provided by real meteorological data have little effect on the horizontal components of positioning compared to the meteorological model, while in the vertical component, the positioning accuracy is improved by 90·6%, 33·0%, 22·2% and 19·8% compared with the standard atmospheric model, University of New Brunswick (UNB3m) model, Global Pressure and Temperature (GPT) model, and Global Pressure and Temperature-2 (GPT2) model and the convergence times are decreased 51·2%, 32·8%, 32·5%, and 32·3%, respectively.

2019 ◽  
Vol 11 (3) ◽  
pp. 311 ◽  
Author(s):  
Wenju Fu ◽  
Guanwen Huang ◽  
Yuanxi Zhang ◽  
Qin Zhang ◽  
Bobin Cui ◽  
...  

The emergence of multiple global navigation satellite systems (multi-GNSS), including global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), and Galileo, brings not only great opportunities for real-time precise point positioning (PPP), but also challenges in quality control because of inevitable data anomalies. This research aims at achieving the real-time quality control of the multi-GNSS combined PPP using additional observations with opposite weight. A robust multiple-system combined PPP estimation is developed to simultaneously process observations from all the four GNSS systems as well as single, dual, or triple systems. The experiment indicates that the proposed quality control can effectively eliminate the influence of outliers on the single GPS and the multiple-system combined PPP. The analysis on the positioning accuracy and the convergence time of the proposed robust PPP is conducted based on one week’s data from 32 globally distributed stations. The positioning root mean square (RMS) error of the quad-system combined PPP is 1.2 cm, 1.0 cm, and 3.0 cm in the east, north, and upward components, respectively, with the improvements of 62.5%, 63.0%, and 55.2% compared to those of single GPS. The average convergence time of the quad-system combined PPP in the horizontal and vertical components is 12.8 min and 12.2 min, respectively, while it is 26.5 min and 23.7 min when only using single-GPS PPP. The positioning performance of the GPS, GLONASS, and BDS (GRC) combination and the GPS, GLONASS, and Galileo (GRE) combination is comparable to the GPS, GLONASS, BDS and Galileo (GRCE) combination and it is better than that of the GPS, BDS, and Galileo (GCE) combination. Compared to GPS, the improvements of the positioning accuracy of the GPS and GLONASS (GR) combination, the GPS and Galileo (GE) combination, the GPS and BDS (GC) combination in the east component are 53.1%, 43.8%, and 40.6%, respectively, while they are 55.6%, 48.1%, and 40.7% in the north component, and 47.8%, 40.3%, and 34.3% in the upward component.


Sensors ◽  
2014 ◽  
Vol 14 (10) ◽  
pp. 18433-18453 ◽  
Author(s):  
Matthias Gilgien ◽  
Jörg Spörri ◽  
Philippe Limpach ◽  
Alain Geiger ◽  
Erich Müller

Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5563
Author(s):  
Xianqiang Cui ◽  
Tianhang Gao ◽  
Changsheng Cai

The existence of colored noise in kinematic positioning will greatly degrade the accuracy of position solutions. This paper proposes a Kalman filter-based quad-constellation global navigation satellite system (GNSS) navigation algorithm with colored noise mitigation. In this algorithm, the observation colored noise and state colored noise models are established by utilizing their residuals in the past epochs, and then the colored noise is predicted using the models for mitigation in the current epoch in the integrated Global Positioning System (GPS)/GLObal NAvigation Satellite System (GLONASS)/BeiDou Navigation Satellite System (BDS)/Galileo navigation. Kinematic single point positioning (SPP) experiments under different satellite visibility conditions and road patterns are conducted to evaluate the effect of colored noise on the positioning accuracy for the quad-constellation combined navigation. Experiment results show that the colored noise model can fit the colored noise more effectively in the case of good satellite visibility. As a result, the positioning accuracy improvement is more significant after handling the colored noise. The three-dimensional positioning accuracy can be improved by 25.1%. Different satellite elevation cut-off angles of 10º, 20º and 30º are set to simulate different satellite visibility situations. Results indicate that the colored noise is decreased with the increment of the elevation cut-off angle. Consequently, the improvement of the SPP accuracy after handling the colored noise is gradually reduced from 27.3% to 16.6%. In the cases of straight and curved roads, the quad-constellation GNSS-SPP accuracy can be improved by 22.1% and 25.7% after taking the colored noise into account. The colored noise can be well-modeled and mitigated in both the straight and curved road conditions.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1120 ◽  
Author(s):  
Chuanzhen Sheng ◽  
Xingli Gan ◽  
Baoguo Yu ◽  
Jingkui Zhang

In urban canyon environments, Global Navigation Satellite System (GNSS) satellites are heavily obstructed with frequent rise and fall and severe multi-path errors induced by signal reflection, making it difficult to acquire precise, continuous, and reliable positioning information. To meet imperative demands for high-precision positioning of public users in complex environments, like urban canyons, and to solve the problems for GNSS/pseudolite positioning under these circumstances, the Global Navigation Satellite System (GNSS) Precision Point Positioning (PPP) algorithm combined with a pseudolite (PLS) was introduced. The former problems with the pseudolite PPP technique with distributed pseudo-satellites, which relies heavily on known points for initiation and prerequisite for previous high-precision time synchronization, were solved by means of a real-time equivalent clock error estimation algorithm, ambiguity fixing, and validation method. Experiments based on a low-cost receiver were performed, and the results show that in a weak obstructed environment with low-density building where the number of GNSS satellites was greater than seven, the accuracy of pseudolite/GNSS PPP with fixed ambiguity was better than 0.15 m; when there were less than four GNSS satellites in severely obstructed circumstances, it was impossible to obtain position by GNSS alone, but with the support of a pseudolite, the accuracy of PPP was able to be better than 0.3 m. Even without GNSS, the accuracy of PPP could be better than 0.5 m with only four pseudolites. The pseudolite/GNSS PPP algorithm presented in this paper can effectively improve availability with less GNSS or even without GNSS in constrained environments, like urban canyons in cities.


2022 ◽  
Vol 12 (2) ◽  
pp. 693
Author(s):  
Dorijan Radočaj ◽  
Ivan Plaščak ◽  
Goran Heffer ◽  
Mladen Jurišić

The high-precision positioning and navigation of agricultural machinery represent a backbone for precision agriculture, while its worldwide implementation is in rapid growth. Previous studies improved low-cost global navigation satellite system (GNSS) hardware solutions and fused GNSS data with complementary sources, but there is still no affordable and flexible framework for positioning accuracy assessment of agricultural machinery. Such a low-cost method was proposed in this study, simulating the actual movement of the agricultural machinery during agrotechnical operations. Four of the most commonly used GNSS corrections in Croatia were evaluated in two repetitions: Croatian Positioning System (CROPOS), individual base station, Satellite-based Augmentation Systems (SBASs), and an absolute positioning method using a smartphone. CROPOS and base station produced the highest mean GNSS positioning accuracy of 2.4 and 2.9 cm, respectively, but both of these corrections produced lower accuracy than declared. All evaluated corrections produced significantly different median values in two repetitions, representing inconsistency of the positioning accuracy regarding field conditions. While the proposed method allowed flexible and effective application in the field, future studies will be directed towards the reduction of the operator’s subjective impact, mainly by implementing autosteering solutions in agricultural machinery.


2021 ◽  
Vol 17 (5) ◽  
pp. 155014772110167
Author(s):  
Fan Qin ◽  
Linxia Fu ◽  
Yuanqing Wang ◽  
Yi Mao

Global navigation satellite system is indispensable to provide positioning, navigation, and timing information for pedestrians and vehicles in location-based services. However, tree canopies, although considered as valuable city infrastructures in urban areas, adversely degrade the accuracy of global navigation satellite system positioning as they attenuate the satellite signals. This article proposes a bagging tree-based global navigation satellite system pseudorange error prediction algorithm, by considering two variables, including carrier to noise C/ N0 and elevation angle θe to improve the global navigation satellite system positioning accuracy in the foliage area. The positioning accuracy improvement is then obtained by applying the predicted pseudorange error corrections. The experimental results shows that as the stationary character of the geostationary orbit satellites, the improvement of the prediction accuracy of the BeiDou navigation satellite system solution (85.42% in light foliage and 83.99% in heavy foliage) is much higher than that of the global positioning system solution (70.77% in light foliage and 73.61% in heavy foliage). The positioning error values in east, north, and up coordinates are improved by the proposed algorithm, especially a significant decrease in up direction. Moreover, the improvement rate of the three-dimensional root mean square error of positioning accuracy in light foliage area test is 86% for BeiDou navigation satellite system/global positioning system combination solutions, while the corresponding improvement rate is 82% for the heavy foliage area test.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Xingxing Li ◽  
Xuanbin Wang ◽  
Jianchi Liao ◽  
Xin Li ◽  
Shengyu Li ◽  
...  

AbstractBecause of its high-precision, low-cost and easy-operation, Precise Point Positioning (PPP) becomes a potential and attractive positioning technique that can be applied to self-driving cars and drones. However, the reliability and availability of PPP will be significantly degraded in the extremely difficult conditions where Global Navigation Satellite System (GNSS) signals are blocked frequently. Inertial Navigation System (INS) has been integrated with GNSS to ameliorate such situations in the last decades. Recently, the Visual-Inertial Navigation Systems (VINS) with favorable complementary characteristics is demonstrated to realize a more stable and accurate local position estimation than the INS-only. Nevertheless, the system still must rely on the global positions to eliminate the accumulated errors. In this contribution, we present a semi-tight coupling framework of multi-GNSS PPP and Stereo VINS (S-VINS), which achieves the bidirectional location transfer and sharing in two separate navigation systems. In our approach, the local positions, produced by S-VINS are integrated with multi-GNSS PPP through a graph-optimization based method. Furthermore, the accurate forecast positions with S-VINS are fed back to assist PPP in GNSS-challenged environments. The statistical analysis of a GNSS outage simulation test shows that the S-VINS mode can effectively suppress the degradation of positioning accuracy compared with the INS-only mode. We also carried out a vehicle-borne experiment collecting multi-sensor data in a GNSS-challenged environment. For the complex driving environment, the PPP positioning capability is significantly improved with the aiding of S-VINS. The 3D positioning accuracy is improved by 49.0% for Global Positioning System (GPS), 40.3% for GPS + GLOANSS (Global Navigation Satellite System), 45.6% for GPS + BDS (BeiDou navigation satellite System), and 51.2% for GPS + GLONASS + BDS. On this basis, the solution with the semi-tight coupling scheme of multi-GNSS PPP/S-VINS achieves the improvements of 41.8–60.6% in 3D positioning accuracy compared with the multi-GNSS PPP/INS solutions.


2018 ◽  
Vol 11 (1) ◽  
pp. 41 ◽  
Author(s):  
Florian Zus ◽  
Jan Douša ◽  
Michal Kačmařík ◽  
Pavel Václavovic ◽  
Galina Dick ◽  
...  

We developed operators to assimilate Global Navigation Satellite System (GNSS) Zenith Total Delays (ZTDs) and horizontal delay gradients into a numerical weather model. In this study we experiment with refractivity fields derived from the Global Forecast System (GFS) available with a horizontal resolution of 0.5°. We begin our investigations with simulated observations. In essence, we extract the tropospheric parameters from the GFS analysis, add noise to mimic observation errors and assimilate the simulated observations into the GFS 24h forecast valid at the same time. We consider three scenarios: (1) the assimilation of ZTDs (2) the assimilation of horizontal delay gradients and (3) the assimilation of both ZTDs and horizontal delay gradients. The impact is measured by utilizing the refractivity fields. We find that the assimilation of the horizontal delay gradients in addition to the ZTDs improves the refractivity field around 800 hPa. When we consider a single station there is a clear improvement when horizontal delay gradients are assimilated in addition to the ZTDs because the horizontal delay gradients contain information that is not contained in the ZTDs. On the other hand, when we consider a dense station network there is not a significant improvement when horizontal delay gradients are assimilated in addition to the ZTDs because the horizontal delay gradients do not contain information that is not already contained in the ZTDs. Finally, we replace simulated by real observations, that is, tropospheric parameters from a Precise Point Positioning solution provided with the G-Nut/Tefnut software, in order to show that the GFS 24h forecast is indeed improved when GNSS horizontal delay gradients are assimilated in addition to GNSS ZTDs; for the considered station (Potsdam, Germany) and period (June and July, 2017) we find an improvement in the retrieved refractivity of up to 4%.


Sign in / Sign up

Export Citation Format

Share Document