scholarly journals Empirical Study and Improvement on Deep Transfer Learning for Human Activity Recognition

Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 57 ◽  
Author(s):  
Renjie Ding ◽  
Xue Li ◽  
Lanshun Nie ◽  
Jiazhen Li ◽  
Xiandong Si ◽  
...  

Human activity recognition (HAR) based on sensor data is a significant problem in pervasive computing. In recent years, deep learning has become the dominating approach in this field, due to its high accuracy. However, it is difficult to make accurate identification for the activities of one individual using a model trained on data from other users. The decline on the accuracy of recognition restricts activity recognition in practice. At present, there is little research on the transferring of deep learning model in this field. This is the first time as we known, an empirical study was carried out on deep transfer learning between users with unlabeled data of target. We compared several widely-used algorithms and found that Maximum Mean Discrepancy (MMD) method is most suitable for HAR. We studied the distribution of features generated from sensor data. We improved the existing method from the aspect of features distribution with center loss and get better results. The observations and insights in this study have deepened the understanding of transfer learning in the activity recognition field and provided guidance for further research.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2760
Author(s):  
Seungmin Oh ◽  
Akm Ashiquzzaman ◽  
Dongsu Lee ◽  
Yeonggwang Kim ◽  
Jinsul Kim

In recent years, various studies have begun to use deep learning models to conduct research in the field of human activity recognition (HAR). However, there has been a severe lag in the absolute development of such models since training deep learning models require a lot of labeled data. In fields such as HAR, it is difficult to collect data and there are high costs and efforts involved in manual labeling. The existing methods rely heavily on manual data collection and proper labeling of the data, which is done by human administrators. This often results in the data gathering process often being slow and prone to human-biased labeling. To address these problems, we proposed a new solution for the existing data gathering methods by reducing the labeling tasks conducted on new data based by using the data learned through the semi-supervised active transfer learning method. This method achieved 95.9% performance while also reducing labeling compared to the random sampling or active transfer learning methods.


2018 ◽  
Vol 42 (6) ◽  
Author(s):  
Mohammad Mehedi Hassan ◽  
Shamsul Huda ◽  
Md Zia Uddin ◽  
Ahmad Almogren ◽  
Majed Alrubaian

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1716 ◽  
Author(s):  
Seungeun Chung ◽  
Jiyoun Lim ◽  
Kyoung Ju Noh ◽  
Gague Kim ◽  
Hyuntae Jeong

In this paper, we perform a systematic study about the on-body sensor positioning and data acquisition details for Human Activity Recognition (HAR) systems. We build a testbed that consists of eight body-worn Inertial Measurement Units (IMU) sensors and an Android mobile device for activity data collection. We develop a Long Short-Term Memory (LSTM) network framework to support training of a deep learning model on human activity data, which is acquired in both real-world and controlled environments. From the experiment results, we identify that activity data with sampling rate as low as 10 Hz from four sensors at both sides of wrists, right ankle, and waist is sufficient in recognizing Activities of Daily Living (ADLs) including eating and driving activity. We adopt a two-level ensemble model to combine class-probabilities of multiple sensor modalities, and demonstrate that a classifier-level sensor fusion technique can improve the classification performance. By analyzing the accuracy of each sensor on different types of activity, we elaborate custom weights for multimodal sensor fusion that reflect the characteristic of individual activities.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 99152-99160 ◽  
Author(s):  
Abdu Gumaei ◽  
Mohammad Mehedi Hassan ◽  
Abdulhameed Alelaiwi ◽  
Hussain Alsalman

2021 ◽  
pp. 103-116
Author(s):  
Hariprasath Manoharan ◽  
Ganesan Sivarajan ◽  
Subramanian Srikrishna

Sign in / Sign up

Export Citation Format

Share Document