scholarly journals Fusion of High-Dynamic and Low-Drift Sensors Using Kalman Filters

Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 186 ◽  
Author(s):  
Bin Wu ◽  
Tiantian Huang ◽  
Yan Jin ◽  
Jie Pan ◽  
Kaichen Song

In practice, a high-dynamic vibration sensor is often plagued by the problem of drift, which is caused by thermal effects. Conversely, low-drift sensors typically have a limited sample rate range. This paper presents a system combining different types of sensors to address general drift problems that occur in measurements for high-dynamic vibration signals. In this paper, the hardware structure and algorithms for fusing high-dynamic and low-drift sensors are described. The algorithms include a drift state estimation and a Kalman filter based on a linear prediction model. Key issues such as the dimension of the drift state vector, the order of the linear prediction model, are analyzed in the design of algorithm. The performance of the algorithm is illustrated by a simulation example and experiments. The simulation and experimental results show that the drift can be removed while the high-dynamic measuring ability is retained. A high-dynamic vibration measuring system with the frequency range starting from 0 Hz is achieved. Meanwhile, measurement noise was improved 9.3 dB through using the linear-prediction-based Kalman filter.

1991 ◽  
Vol 18 (2) ◽  
pp. 320-327 ◽  
Author(s):  
Murray A. Fitch ◽  
Edward A. McBean

A model is developed for the prediction of river flows resulting from combined snowmelt and precipitation. The model employs a Kalman filter to reflect uncertainty both in the measured data and in the system model parameters. The forecasting algorithm is used to develop multi-day forecasts for the Sturgeon River, Ontario. The algorithm is shown to develop good 1-day and 2-day ahead forecasts, but the linear prediction model is found inadequate for longer-term forecasts. Good initial parameter estimates are shown to be essential for optimal forecasting performance. Key words: Kalman filter, streamflow forecast, multi-day, streamflow, Sturgeon River, MISP algorithm.


2021 ◽  
pp. 105344
Author(s):  
Nadja Pöllath ◽  
Ricardo García-González ◽  
Sevag Kevork ◽  
Ursula Mutze ◽  
Michaela I. Zimmermann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document