scholarly journals Reverse Dispersion Entropy: A New Complexity Measure for Sensor Signal

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5203 ◽  
Author(s):  
Li ◽  
Gao ◽  
Wang

Permutation entropy (PE), as one of the powerful complexity measures for analyzing time series, has advantages of easy implementation and high efficiency. In order to improve the performance of PE, some improved PE methods have been proposed through introducing amplitude information and distance information in recent years. Weighted-permutation entropy (W-PE) weight each arrangement pattern by using variance information, which has good robustness and stability in the case of high noise level and can extract complexity information from data with spike feature or abrupt amplitude change. Dispersion entropy (DE) introduces amplitude information by using the normal cumulative distribution function (NCDF); it not only can detect the change of simultaneous frequency and amplitude, but also is superior to the PE method in distinguishing different data sets. Reverse permutation entropy (RPE) is defined as the distance to white noise in the opposite trend with PE and W-PE, which has high stability for time series with varying lengths. To further improve the performance of PE, we propose a new complexity measure for analyzing time series, and term it as reverse dispersion entropy (RDE). RDE takes PE as its theoretical basis and combines the advantages of DE and RPE by introducing amplitude information and distance information. Simulation experiments were carried out on simulated and sensor signals, including mutation signal detection under different parameters, noise robustness testing, stability testing under different signal-to-noise ratios (SNRs), and distinguishing real data for different kinds of ships and faults. The experimental results show, compared with PE, W-PE, RPE, and DE, that RDE has better performance in detecting abrupt signal and noise robustness testing, and has better stability for simulated and sensor signal. Moreover, it also shows higher distinguishing ability than the other four kinds of PE for sensor signals.

2013 ◽  
Vol 87 (2) ◽  
Author(s):  
Bilal Fadlallah ◽  
Badong Chen ◽  
Andreas Keil ◽  
José Príncipe

Proceedings ◽  
2019 ◽  
Vol 46 (1) ◽  
pp. 1 ◽  
Author(s):  
Yuxing Li

Permutation entropy (PE), as one of the effective complexity metrics to represent the complexity of time series, has the merits of simple calculation and high calculation efficiency. In view of the limitations of PE, weighted-permutation entropy (WPE) and reverse permutation entropy (RPE) were proposed to improve the performance of PE. WPE introduces amplitude information to weigh each arrangement pattern, it can not only better reveal the complexity of time series with a sudden change of amplitude, but it also has better robustness to noise; by introducing distance information, RPE is defined as the distance to white noise, it has the reverse trend to traditional PE and has better stability for time series of different lengths. In this paper, we propose a novel complexity metric incorporating distance and amplitude information, and name it reverse weighted-permutation entropy (RWPE), which incorporates the advantages of both WPE and RPE. Three simulation experiments were conducted, including mutation signal detection testing, robustness testing to noise based on complexity, and complexity testing of time series with various lengths. The simulation results show that RWPE can be used as a complexity metric, which has the ability to accurately detect the abrupt amplitudes of time series and has better robustness to noise. Moreover, it also shows greater stability than the other three kinds of PE for time series with various lengths.


2019 ◽  
Vol 513 ◽  
pp. 635-643 ◽  
Author(s):  
Francisco Traversaro ◽  
Nicolás Ciarrocchi ◽  
Florencia Pollo Cattaneo ◽  
Francisco Redelico

2021 ◽  
Author(s):  
Junyuan Fei ◽  
Jintao Liu

<p>Highly intermittent rivers are widespread on the Tibetan Plateau and deeply impact the ecological stability and social development downstream. Due to the highly intermittent rivers are small, seasonal variated and heavy cloud covered on the Tibetan Plateau, their distribution location is still unknown at catchment scale currently. To address these challenges, a new method is proposed for extracting the cumulative distribution location of highly intermittent river from Sentinel-1 time series in an alpine catchment on the Tibetan Plateau. The proposed method first determines the proper time scale of extracting highly intermittent river, based on which the statistical features are calculated to amplify the difference between land covers. Subsequently, the synoptic cumulative distribution location is extracted through Random Forest model using the statistical features above as explanatory variables. And the precise result is generated by combining the synoptic result with critical flow accumulation area.  The highly intermittent river segments are derived and assessed in an alpine catchment of Lhasa River Basin. The results show that the the intra-annual time scale is sufficient for highly intermittent river extraction. And the proposed method can extract highly intermittent river cumulative distribution locations with total precision of 0.62, distance error median of 64.03 m, outperforming other existing river extraction method.</p>


2018 ◽  
Vol 48 (10) ◽  
pp. 2877-2897
Author(s):  
Emad Ashtari Nezhad ◽  
Yadollah Waghei ◽  
G. R. Mohtashami Borzadaran ◽  
H. R. Nilli Sani ◽  
Hadi Alizadeh Noughabi

Sign in / Sign up

Export Citation Format

Share Document