scholarly journals Mode Selection and Spectrum Allocation in Coexisting D2D and Cellular Networks with Cooperative Precoding

Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5417 ◽  
Author(s):  
Yu-Wei Chan ◽  
Feng-Tsun Chien ◽  
Chao-Tung Yang

In this paper, we investigate the mode selection strategies for a new device-to-device (D2D) pair becoming active in a network with a number of existing D2D sensors or users coexisting with cellular users in a D2D-enabled heterogeneous network. Specifically, we propose two selection rules, the signal-to-interference-plus-noise-ratio (SINR)-based and the capacity-based, combined with two sets of different precoding schemes and discuss their impacts on the system under a variety of scenarios. While the cooperative block diagonalization (BD) among the cellular users combined with the zero-forcing (ZF) precoding among D2D users can eliminate interference observed at the new D2D receiving sensor, the maximum signal-to-leakage-and-noise-ratio (SLNR) precoding is often a preferred option due to low-complexity implementations and comparable performance. We note that the two selection rules, the SINR-based and the capacity-based, considered in this paper impact on the system differently, with interesting tradeoff from different perspectives. Finally, we provide insights by simulations into the best selection among the three modes depending on a variety of use cases in the network.

2013 ◽  
Vol 427-429 ◽  
pp. 2519-2522
Author(s):  
Qiong Wang ◽  
Zhao Xia Zhang ◽  
Jia Liu

In LTE-Advanced (LTE-A) system, coordinated multi-point (CoMP) technology can reduce inter-cell interference effectively, and improve the communication quality of the cell edge users. The main purpose of this paper is to optimize the precoding algorithm and enhance the overall cell throughput in LTE-A CoMP downlink. Based on CoMP-JP, we focus on zero-forcing (ZF), block diagonalization (BD) and signal-to-leakage-plus-noise-ratio (SLNR). We propose an improved precoding algorithm (ZF-SLNR) which combines the advantages of ZF and SLNR . Simulation results suggest that ZF-SLNR algorithm provides appreciable performance improvement.


2012 ◽  
Vol 457-458 ◽  
pp. 600-606
Author(s):  
Xian Kun Gao ◽  
Yan Cui ◽  
Ji Lai Ying ◽  
Yong Chang Yu

Recently many practical downlink multi-user MIMO linear pre-coding methods have been proposed, such as the channel inversion method and the block diagonalization method (BD). Considering the channel inversion method based on MMSE criterion (MMSE-CI) which is confined to a single receives antenna case, the BD has more advantages in multiple antennas cases, however, it has poor performance at the low and medium SNR regime on account of no consideration on the noise. In this paper, an improved MMSE pre-coding method is proposed with multi receive antennas of each user. Based on MMSE-CI, the cooperation of multiple antennas is adopted to further suppress the residual interference during designing the pre-coding matrix, which could increase the signal-to- interference-plus-noise ratio (SINR) at each user’s receiver. The proposed method obtains a better performance than the MMSE-CI and the BD algorithms, and its effectiveness is validated by both theoretical analyses and numerical simulations.


2021 ◽  
Author(s):  
Daquan Feng ◽  
Wei Jiang ◽  
Gongbin Qian ◽  
Litai Long ◽  
Sa Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document