scholarly journals Study on Weight Function Distribution of Hybrid Gas-Liquid Two-Phase Flow Electromagnetic Flowmeter

Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1431 ◽  
Author(s):  
Yulin Jiang

The electromagnetic flowmeter is usually used for single-phase fluid parameter measurement. When the measured fluid is gas-liquid two-phase flow, the geometry of the sensor measurement space will change with the movement of the gas, which will cause measurement errors. The weight function distribution is an important parameter to analyze such measurement errors. The traditional method for calculating the weight function of gas-liquid two-phase flow involves complex dimensional space transformation, which is difficult to understand and apply. This paper presents a new method for calculating the weight function of the gas-liquid two-phase flow electromagnetic flowmeter. Firstly, based on the measurement principle of the electromagnetic flowmeter, a general model of weight function of the gas-liquid two-phase flow electromagnetic flowmeter is built. Secondly, the bubbles in the fluid are regarded as the “isolated” points in the flow field. According to the physical connection between the “field” of the measured fluid and the “source” of the sensor electrode, the Green’s function expression based on gas-liquid two-phase flow is established. Then, combined with the boundary conditions of the measurement space of the electromagnetic flowmeter, the Green’s function is analyzed. Finally, the general model of weight function is solved by using the expression of Green’s function, then the expression of the weight function of the electromagnetic flowmeter is obtained when the measured fluid is hybrid gas-liquid two-phase flow. The simulation results show that the proposed method can reasonably describe the influence of the gas in the measured fluid on the output signal of the sensor, and the experimental results also indirectly prove the rationality of this method.

Sensors ◽  
2016 ◽  
Vol 16 (10) ◽  
pp. 1703 ◽  
Author(s):  
Yanjun Wang ◽  
Haoyu Li ◽  
Xingbin Liu ◽  
Yuhui Zhang ◽  
Ronghua Xie ◽  
...  

2016 ◽  
Vol 831 ◽  
pp. 92-103 ◽  
Author(s):  
Henryk Bieliński ◽  
Jaroslaw Mikielewicz

The present paper offers an analysis of heat transfer and fluid flow in two phase thermosyphon loop with minichannels. A one-dimensional model of two-phase flow and heat transfer in a closed thermosyphon loop with minichannels was examined. The created general model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The separate two-phase flow model is used in calculations. The numerical results obtained for the selected heater and cooler using the general model of thermosyphon loop indicate that the mass flux increases with increasing length of the heated section and decreases with increasing length of the cooled section of the loop. It was found that the heat transfer coefficient for flow boiling and flow condensation in the steady state increases with increasing heat flux in the heater and cooler with minichannels, respectively. The design and configuration of heaters and coolers has a considerable impact on the efficiency of thermosyphon loop. These factors make it possible to optimize the computer processor cooling.


1988 ◽  
Vol 14 (4) ◽  
pp. 559-562
Author(s):  
Mitsumasa Murakami ◽  
Kenichi Maruo ◽  
Tadatsugu Yoshiki

Sign in / Sign up

Export Citation Format

Share Document