scholarly journals Data Augmentation of Surface Electromyography for Hand Gesture Recognition

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4892
Author(s):  
Panagiotis Tsinganos ◽  
Bruno Cornelis ◽  
Jan Cornelis ◽  
Bart Jansen ◽  
Athanassios Skodras

The range of applications of electromyography-based gesture recognition has increased over the last years. A common problem regularly encountered in literature is the inadequate data availability. Data augmentation, which aims at generating new synthetic data from the existing ones, is the most common approach to deal with this data shortage in other research domains. In the case of surface electromyography (sEMG) signals, there is limited research in augmentation methods and quite regularly the results differ between available studies. In this work, we provide a detailed evaluation of existing (i.e., additive noise, overlapping windows) and novel (i.e., magnitude warping, wavelet decomposition, synthetic sEMG models) strategies of data augmentation for electromyography signals. A set of metrics (i.e., classification accuracy, silhouette score, and Davies–Bouldin index) and visualizations help with the assessment and provides insights about their performance. Methods like signal magnitude warping and wavelet decomposition yield considerable increase (up to 16%) in classification accuracy across two benchmark datasets. Particularly, a significant improvement of 1% in the classification accuracy of the state-of-the-art model in hand gesture recognition is achieved.

The hand gesture detection problem is one of the most prominent problems in machine learning and computer vision applications. Many machine learning techniques have been employed to solve the hand gesture recognition. These techniques find applications in sign language recognition, virtual reality, human machine interaction, autonomous vehicles, driver assistive systems etc. In this paper, the goal is to design a system to correctly identify hand gestures from a dataset of hundreds of hand gesture images. In order to incorporate this, decision fusion based system using the transfer learning architectures is proposed to achieve the said task. Two pretrained models namely ‘MobileNet’ and ‘Inception V3’ are used for this purpose. To find the region of interest (ROI) in the image, YOLO (You Only Look Once) architecture is used which also decides the type of model. Edge map images and the spatial images are trained using two separate versions of the MobileNet based transfer learning architecture and then the final probabilities are combined to decide upon the hand sign of the image. The simulation results using classification accuracy indicate the superiority of the approach of this paper against the already researched approaches using different quantitative techniques such as classification accuracy.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 672 ◽  
Author(s):  
Lin Chen ◽  
Jianting Fu ◽  
Yuheng Wu ◽  
Haochen Li ◽  
Bin Zheng

By training the deep neural network model, the hidden features in Surface Electromyography(sEMG) signals can be extracted. The motion intention of the human can be predicted by analysis of sEMG. However, the models recently proposed by researchers often have a large number of parameters. Therefore, we designed a compact Convolution Neural Network (CNN) model, which not only improves the classification accuracy but also reduces the number of parameters in the model. Our proposed model was validated on the Ninapro DB5 Dataset and the Myo Dataset. The classification accuracy of gesture recognition achieved good results.


2021 ◽  
Vol 15 ◽  
Author(s):  
David P. Leins ◽  
Christian Gibas ◽  
Rainer Brück ◽  
Robert Haschke

Striving for more robust and natural control of multi-fingered hand prostheses, we are studying electrical impedance tomography (EIT) as a method to monitor residual muscle activations. Previous work has shown promising results for hand gesture recognition, but also lacks generalization across multiple sessions and users. Thus, the present paper aims for a detailed analysis of an existing EIT dataset acquired with a 16-electrode wrist band as a prerequisite for further improvements of machine learning results on this type of signal. The performed t-SNE analysis confirms a much stronger inter-session and inter-user variance compared to the expected in-class variance. Additionally, we observe a strong drift of signals within a session. To handle these challenging problems, we propose new machine learning architectures based on deep learning, which allow to separate undesired from desired variation and thus significantly improve the classification accuracy. With these new architectures we increased cross-session classification accuracy on 12 gestures from 19.55 to 30.45%. Based on a fundamental data analysis we developed three calibration methods and thus were able to further increase cross-session classification accuracy to 39.01, 55.37, and 56.34%, respectively.


2020 ◽  
Vol 10 (18) ◽  
pp. 6507
Author(s):  
Yen-Cheng Chu ◽  
Yun-Jie Jhang ◽  
Tsung-Ming Tai ◽  
Wen-Jyi Hwang

The objective of this study is to present novel neural network (NN) algorithms and systems for sensor-based hand gesture recognition. The algorithms are able to classify accurately a sequence of hand gestures from the sensory data produced by accelerometers and gyroscopes. They are the extensions from the PairNet, which is a Convolutional Neural Network (CNN) capable of carrying out simple pairing operations with low computational complexities. Three different types of feedforward NNs, termed Residual PairNet, PairNet with Inception, and Residual PairNet with Inception are proposed for the extension. They are the PairNet operating in conjunction with short-cut connections and/or inception modules for achieving high classification accuracy and low computation complexity. A prototype system based on smart phones for remote control of home appliances has been implemented for the performance evaluation. Experimental results reveal that the PairNet has superior classification accuracy over its basic CNN and Recurrent NN (RNN) counterparts. Furthermore, the Residual PairNet, PairNet with Inception, and Residual PairNet with Inception are able to further improve classification hit rate and/or reduce recognition time for hand gesture recognition.


Sign in / Sign up

Export Citation Format

Share Document