scholarly journals A Real-Time Dual-Microphone Speech Enhancement Algorithm Assisted by Bone Conduction Sensor

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5050
Author(s):  
Yi Zhou ◽  
Yufan Chen ◽  
Yongbao Ma ◽  
Hongqing Liu

The quality and intelligibility of the speech are usually impaired by the interference of background noise when using internet voice calls. To solve this problem in the context of wearable smart devices, this paper introduces a dual-microphone, bone-conduction (BC) sensor assisted beamformer and a simple recurrent unit (SRU)-based neural network postfilter for real-time speech enhancement. Assisted by the BC sensor, which is insensitive to the environmental noise compared to the regular air-conduction (AC) microphone, the accurate voice activity detection (VAD) can be obtained from the BC signal and incorporated into the adaptive noise canceller (ANC) and adaptive block matrix (ABM). The SRU-based postfilter consists of a recurrent neural network with a small number of parameters, which improves the computational efficiency. The sub-band signal processing is designed to compress the input features of the neural network, and the scale-invariant signal-to-distortion ratio (SI-SDR) is developed as the loss function to minimize the distortion of the desired speech signal. Experimental results demonstrate that the proposed real-time speech enhancement system provides significant speech sound quality and intelligibility improvements for all noise types and levels when compared with the AC-only beamformer with a postfiltering algorithm.

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1878
Author(s):  
Yi Zhou ◽  
Haiping Wang ◽  
Yijing Chu ◽  
Hongqing Liu

The use of multiple spatially distributed microphones allows performing spatial filtering along with conventional temporal filtering, which can better reject the interference signals, leading to an overall improvement of the speech quality. In this paper, we propose a novel dual-microphone generalized sidelobe canceller (GSC) algorithm assisted by a bone-conduction (BC) sensor for speech enhancement, which is named BC-assisted GSC (BCA-GSC) algorithm. The BC sensor is relatively insensitive to the ambient noise compared to the conventional air-conduction (AC) microphone. Hence, BC speech can be analyzed to generate very accurate voice activity detection (VAD), even in a high noise environment. The proposed algorithm incorporates the VAD information obtained by the BC speech into the adaptive blocking matrix (ABM) and adaptive noise canceller (ANC) in GSC. By using VAD to control ABM and combining VAD with signal-to-interference ratio (SIR) to control ANC, the proposed method could suppress interferences and improve the overall performance of GSC significantly. It is verified by experiments that the proposed GSC system not only improves speech quality remarkably but also boosts speech intelligibility.


2021 ◽  
Vol 11 (11) ◽  
pp. 4758
Author(s):  
Ana Malta ◽  
Mateus Mendes ◽  
Torres Farinha

Maintenance professionals and other technical staff regularly need to learn to identify new parts in car engines and other equipment. The present work proposes a model of a task assistant based on a deep learning neural network. A YOLOv5 network is used for recognizing some of the constituent parts of an automobile. A dataset of car engine images was created and eight car parts were marked in the images. Then, the neural network was trained to detect each part. The results show that YOLOv5s is able to successfully detect the parts in real time video streams, with high accuracy, thus being useful as an aid to train professionals learning to deal with new equipment using augmented reality. The architecture of an object recognition system using augmented reality glasses is also designed.


2021 ◽  
Vol 11 (6) ◽  
pp. 2816
Author(s):  
Hansol Kim ◽  
Jong Won Shin

The transfer function-generalized sidelobe canceller (TF-GSC) is one of the most popular structures for the adaptive beamformer used in multi-channel speech enhancement. Although the TF-GSC has shown decent performance, a certain amount of steering error is inevitable, which causes leakage of speech components through the blocking matrix (BM) and distortion in the fixed beamformer (FBF) output. In this paper, we propose to suppress the leaked signal in the output of the BM and restore the desired signal in the FBF output of the TF-GSC. To reduce the risk of attenuating speech in the adaptive noise canceller (ANC), the speech component in the output of the BM is suppressed by applying a gain function similar to the square-root Wiener filter, assuming that a certain portion of the desired speech should be leaked into the BM output. Additionally, we propose to restore the attenuated desired signal in the FBF output by adding some of the microphone signal components back, depending on how microphone signals are related to the FBF and BM outputs. The experimental results showed that the proposed TF-GSC outperformed conventional TF-GSC in terms of the perceptual evaluation of speech quality (PESQ) scores under various noise conditions and the direction of arrivals for the desired and interfering sources.


2013 ◽  
Vol 860-863 ◽  
pp. 2791-2795
Author(s):  
Qian Xiao ◽  
Yu Shan Jiang ◽  
Ru Zheng Cui

Aiming at the large calculation workload of adaptive algorithm in adaptive filter based on wavelet transform, affecting the filtering speed, a wavelet-based neural network adaptive filter is constructed in this paper. Since the neural network has the ability of distributed storage and fast self-evolution, use Hopfield neural network to implement adaptive filter LMS algorithm in this filter so as to improve the speed of operation. The simulation results prove that, the new filter can achieve rapid real-time denoising.


Author(s):  
Meghna Babubhai Patel ◽  
Jagruti N. Patel ◽  
Upasana M. Bhilota

ANN can work the way the human brain works and can learn the way we learn. The neural network is this kind of technology that is not an algorithm; it is a network that has weights on it, and you can adjust the weights so that it learns. You teach it through trials. It is a fact that the neural network can operate and improve its performance after “teaching” it, but it needs to undergo some process of learning to acquire information and be familiar with them. Nowadays, the age of smart devices dominates the technological world, and no one can deny their great value and contributions to mankind. A dramatic rise in the platforms, tools, and applications based on machine learning and artificial intelligence has been seen. These technologies not only impacted software and the internet industry but also other verticals such as healthcare, legal, manufacturing, automobile, and agriculture. The chapter shows the importance of latest technology used in ANN and future trends in ANN.


2020 ◽  
Vol 10 (3) ◽  
pp. 766 ◽  
Author(s):  
Alec Wright ◽  
Eero-Pekka Damskägg ◽  
Lauri Juvela ◽  
Vesa Välimäki

This article investigates the use of deep neural networks for black-box modelling of audio distortion circuits, such as guitar amplifiers and distortion pedals. Both a feedforward network, based on the WaveNet model, and a recurrent neural network model are compared. To determine a suitable hyperparameter configuration for the WaveNet, models of three popular audio distortion pedals were created: the Ibanez Tube Screamer, the Boss DS-1, and the Electro-Harmonix Big Muff Pi. It is also shown that three minutes of audio data is sufficient for training the neural network models. Real-time implementations of the neural networks were used to measure their computational load. To further validate the results, models of two valve amplifiers, the Blackstar HT-5 Metal and the Mesa Boogie 5:50 Plus, were created, and subjective tests were conducted. The listening test results show that the models of the first amplifier could be identified as different from the reference, but the sound quality of the best models was judged to be excellent. In the case of the second guitar amplifier, many listeners were unable to hear the difference between the reference signal and the signals produced with the two largest neural network models. This study demonstrates that the neural network models can convincingly emulate highly nonlinear audio distortion circuits, whilst running in real-time, with some models requiring only a relatively small amount of processing power to run on a modern desktop computer.


2017 ◽  
Vol 10 (27) ◽  
pp. 1329-1342 ◽  
Author(s):  
Javier O. Pinzon Arenas ◽  
Robinson Jimenez Moreno ◽  
Paula C. Useche Murillo

This paper presents the implementation of a Region-based Convolutional Neural Network focused on the recognition and localization of hand gestures, in this case 2 types of gestures: open and closed hand, in order to achieve the recognition of such gestures in dynamic backgrounds. The neural network is trained and validated, achieving a 99.4% validation accuracy in gesture recognition and a 25% average accuracy in RoI localization, which is then tested in real time, where its operation is verified through times taken for recognition, execution behavior through trained and untrained gestures, and complex backgrounds.


Sign in / Sign up

Export Citation Format

Share Document