scholarly journals Development of the User Requirements for the Canadian WildFireSat Satellite Mission

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5081
Author(s):  
Joshua M. Johnston ◽  
Natasha Jackson ◽  
Colin McFayden ◽  
Linh Ngo Phong ◽  
Brian Lawrence ◽  
...  

In 2019 the Canadian Space Agency initiated development of a dedicated wildfire monitoring satellite (WildFireSat) mission. The intent of this mission is to support operational wildfire management, smoke and air quality forecasting, and wildfire carbon emissions reporting. In order to deliver the mission objectives, it was necessary to identify the technical and operational challenges which have prevented broad exploitation of Earth Observation (EO) in Canadian wildfire management and to address these challenges in the mission design. In this study we emphasize the first objective by documenting the results of wildfire management end-user engagement activities which were used to identify the key Fire Management Functionalities (FMFs) required for an Earth Observation wildfire monitoring system. These FMFs are then used to define the User Requirements for the Canadian Wildland Fire Monitoring System (CWFMS) which are refined here for the WildFireSat mission. The User Requirements are divided into Observational, Measurement, and Precision requirements and form the foundation for the design of the WildFireSat mission (currently in Phase-A, summer 2020).

2020 ◽  
Vol 501 (1) ◽  
pp. 1168-1187
Author(s):  
Vishal Ray ◽  
Daniel J Scheeres

ABSTRACT The analytical theory of satellite orbits in an atmosphere developed by King-Hele remains widely in use for satellite mission design because of its accurate approximation to numerical integration under simplifying assumptions. Over the course of six decades, modifications to the theory have addressed many of its weaknesses. However, in all subsequent modifications of the original theory, the assumption of a constant drag-coefficient has been retained. The drag-coefficient is a dynamic parameter that governs the physical interaction between the atmosphere and the satellite and depends on ambient as well as satellite specific factors. In this work, Fourier series expansion models of the drag-coefficient are incorporated in the original King-Hele theory to capture time-variations of the drag-coefficient in averaging integrals. The modified theory is validated through simulations that demonstrate the attained improvements in approximating numerical results over the original King-Hele formulation.


2010 ◽  
Vol 58 (11) ◽  
pp. 2751-2763 ◽  
Author(s):  
Kuduck Kwon ◽  
Jaeyoung Choi ◽  
Jeongki Choi ◽  
Yongseok Hwang ◽  
Kwyro Lee ◽  
...  

2015 ◽  
Vol 1 (43) ◽  
Author(s):  
V. M. Sineglazov ◽  
V. L. Kupriyanchyk

Author(s):  
Alberto Lorenzo-Alonso ◽  
Marino Palacios ◽  
Ángel Utanda

Disaster Risk Reduction (DRR) is a high priority on the agenda of main stakeholders involved in sustainable development and Earth Observation (EO) can provide useful, timely and economical information in this context. This short communication outlines the European Space Agency’s (ESA) specific initiative to promote the use and uptake of satellite data in the global development community: ‘Earth Observation for Sustainable Development (EO4SD)’. One activity area under EO4SD is devoted to Disaster Risk Reduction: EO4SD DRR. Within this project, a team of European companies and institutions are tasked to develop EO services for supporting the implementation of DRR in International Financial Institutions’ (IFI) projects. Integration of satellite-borne data and ancillary data to generate insight and actionable information is thereby considered a key factor for improved decision making. To understand and fully account for the essential user requirements (IFI & Client States), engagement with technical leaders is crucial. Fit-for-purpose use of data and comprehensive capacity building eventually ensure scalability and long-term transferability. Future perspectives of EO4SD and DRR regarding mainstreaming are also highlighted.


Sign in / Sign up

Export Citation Format

Share Document