scholarly journals A Novel Method for Online Extraction of Small-Angle Scattering Pulse Signals from Particles Based on Variable Forgetting Factor RLS Algorithm

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5759 ◽  
Author(s):  
Rongrui Zhang ◽  
Heng Zhao

The small-angle optical particle counter (OPC) can detect particles with strong light absorption. At the same time, it can ignore the properties of the detected particles and detect the particle size singly and more accurately. Reasonably improving the resolution of the low pulse signal of fine particles is key to improving the detection accuracy of the small-angle OPC. In this paper, a new adaptive filtering method for the small-angle scattering signals of particles is proposed based on the recursive least squares (RLS) algorithm. By analyzing the characteristics of the small-angle scattering signals, a variable forgetting factor (VFF) strategy is introduced to optimize the forgetting factor in the traditional RLS algorithm. It can distinguish the scattering signal from the stray light signal and dynamically adapt to the change in pulse amplitude according to different light absorptions and different particle sizes. To verify the filtering effect, small-angle scattering pulse extraction experiments were carried out in a simulated smoke box with different particle properties. The experiments show that the proposed VFF-RLS algorithm can effectively suppress system stray light and background noise. When the particle detection signal appears, the algorithm has fast convergence and tracking speed and highlights the particle pulse signal well. Compared with that of the traditional scattering pulse extraction method, the resolution of the processed scattering pulse signal of particles is greatly improved, and the extraction of weak particle scattering pulses at a small angle has a greater advantage. Finally, the effect of filter order in the algorithm on the results of extracting scattering pulses is discussed.

2018 ◽  
Vol 160 ◽  
pp. 01001
Author(s):  
Chen Chen ◽  
Run Min ◽  
Qiaoling Tong ◽  
Shifei Tao ◽  
Dian Lyu ◽  
...  

The control performance of boost converter suffers from the variations of important component parameters, such as inductance and capacitance. In this paper, an online inductance and capacitance identification based on variable forgetting factor recursive least-squares (VFF-RLS) algorithm for boost converter is proposed. First, accurate inductance and capacitance identification models and the RLS algorithm are introduced. In order to balance the steady-state identification accuracy and parameter tracking ability, a forgetting factor control technique is investigated. By recovering system noise in the error signal of the algorithm, the value of forgetting factor is dynamically calculated. In addition, since the sampling rate is much lower than the existing identification methods, the proposed algorithm is practical for low-cost applications. Finally, the effectiveness of the proposed algorithm is verified by experiment. The experiment results show that the algorithm has good performance in tracking inductance and capacitance variations.


1993 ◽  
Vol 03 (C8) ◽  
pp. C8-393-C8-396
Author(s):  
T. P.M. BEELEN ◽  
W. H. DOKTER ◽  
H. F. VAN GARDEREN ◽  
R. A. VAN SANTEN ◽  
E. PANTOS

Fuel ◽  
2021 ◽  
Vol 292 ◽  
pp. 120304
Author(s):  
T. Vasilenko ◽  
A. Kirillov ◽  
A. Islamov ◽  
A. Doroshkevich

2009 ◽  
Vol 43 (1) ◽  
pp. 12-16 ◽  
Author(s):  
Gerald J. Schneider ◽  
D. Göritz

A novel theory is presented which allows, for the first time, the analytical description of small-angle scattering experiments on anisotropic shaped clusters of nanoparticles. Experimentally, silica-filled rubber which is deformed is used as an example. The silica can be modelled by solid spheres which form clusters. The experiments demonstrate that the clusters become anisotropic as a result of the deformation whereas the spheres are not affected. A comparison of the newly derived model function and the experiments provides, for the first time, microscopic evidence of the inhomogeneous deformation of clusters in the rubbery matrix.


Sign in / Sign up

Export Citation Format

Share Document