scholarly journals Application of Phase-Reversal Fresnel Zone Plates for High-Resolution Robotic Ultrasonic Non-Destructive Evaluation

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7792
Author(s):  
Dmitry O. Dolmatov ◽  
Daniel Tarrazó-Serrano ◽  
German A. Filippov ◽  
Antonio Uris ◽  
Dmitry A. Sednev

Nowadays the development of automated inspection systems based on six degrees of freedom robotic manipulators is a highly relevant topic in ultrasonic non-destructive testing. One of the issues associated with such development is the problem of acquiring high-resolution results. In this article, the application Phase-Reversal Fresnel Zone Plates is considered for solving this problem. Such acoustic lenses can solve the task of high-resolution results acquisition by using a single unfocused transducer. Furthermore, Phase-Reversal Fresnel Zone Plates can provide the desired focusing depth with the fixed thickness of the coupling layer. It is important in the case of application of devices which provide localized coupling. In this paper a proper design of Phase-Reversal Fresnel Zone Plate was determined according to the conditions of planned experiments. Its efficiency was verified via the Finite Element Method modeling. In all performed experiments the relative error of flaws size estimation did not exceed 6% whereas the signal-to-noise ratio was not lower than 17.1 dB. Thus, experimental results demonstrate that the application of Phase-Reversal Fresnel Zone Plates allowed to obtain results with high lateral resolution and signal-to-noise ratio. These results demonstrate the reasonability of the development of devices that provide localized coupling and use Phase-Reversal Fresnel Zone Plates.

2021 ◽  
Vol 11 (1) ◽  
pp. 78
Author(s):  
Jianbo He ◽  
Zhenyu Wang ◽  
Mingdong Zhang

When the signal to noise ratio of seismic data is very low, velocity spectrum focusing will be poor., the velocity model obtained by conventional velocity analysis methods is not accurate enough, which results in inaccurate migration. For the low signal noise ratio (SNR) data, this paper proposes to use partial Common Reflection Surface (CRS) stack to build CRS gathers, making full use of all of the reflection information of the first Fresnel zone, and improves the signal to noise ratio of pre-stack gathers by increasing the number of folds. In consideration of the CRS parameters of the zero-offset rays emitted angle and normal wave front curvature radius are searched on zero offset profile, we use ellipse evolving stacking to improve the zero offset section quality, in order to improve the reliability of CRS parameters. After CRS gathers are obtained, we use principal component analysis (PCA) approach to do velocity analysis, which improves the noise immunity of velocity analysis. Models and actual data results demonstrate the effectiveness of this method.


1994 ◽  
Vol 23 (1-4) ◽  
pp. 101-104 ◽  
Author(s):  
M. Baciocchi ◽  
R. Maggiora ◽  
M. Gentili

2012 ◽  
Vol 48 (51) ◽  
pp. 6378 ◽  
Author(s):  
Yong-Cheol Jeong ◽  
Bokyung Jung ◽  
Jung-Hwan Park ◽  
Jung-Ki Park

2008 ◽  
Vol 55 (3) ◽  
pp. 842-852 ◽  
Author(s):  
M.C. Maas ◽  
D.R. Schaart ◽  
D.J. van der Laan ◽  
H.T. van Dam ◽  
J. Huizenga ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5080
Author(s):  
Dmitry O. Dolmatov ◽  
Daniel Tarrazó-Serrano ◽  
German A. Filippov ◽  
Igor V. Minin ◽  
Oleg V. Minin ◽  
...  

Currently, phased arrays have found wide application in ultrasonic nondestructive testing. Volumetric results provided by the


Sign in / Sign up

Export Citation Format

Share Document