scholarly journals Intelligent Dynamic Real-Time Spectrum Resource Management for Industrial IoT in Edge Computing

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7902
Author(s):  
Deok-Won Yun ◽  
Won-Cheol Lee

Intelligent dynamic spectrum resource management, which is based on vast amounts of sensing data from industrial IoT in the space–time and frequency domains, uses optimization algorithm-based decisions to minimize levels of interference, such as energy consumption, power control, idle channel allocation, time slot allocation, and spectrum handoff. However, these techniques make it difficult to allocate resources quickly and waste valuable solution information that is optimized according to the evolution of spectrum states in the space–time and frequency domains. Therefore, in this paper, we propose the implementation of intelligent dynamic real-time spectrum resource management through the application of data mining and case-based reasoning, which reduces the complexity of existing intelligent dynamic spectrum resource management and enables efficient real-time resource allocation. In this case, data mining and case-based reasoning analyze the activity patterns of incumbent users using vast amounts of sensing data from industrial IoT and enable rapid resource allocation, making use of case DB classified by case. In this study, we confirmed a number of optimization engine operations and spectrum resource management capabilities (spectrum handoff, handoff latency, energy consumption, and link maintenance) to prove the effectiveness of the proposed intelligent dynamic real-time spectrum resource management. These indicators prove that it is possible to minimize the complexity of existing intelligent dynamic spectrum resource management and maintain efficient real-time resource allocation and reliable communication; also, the above findings confirm that our method can achieve a superior performance to that of existing spectrum resource management techniques.

Author(s):  
B W Weston ◽  
Z N Swingen ◽  
S Gramann ◽  
D Pojar

Abstract Background To describe the Strategic Allocation of Fundamental Epidemic Resources (SAFER) model as a method to inform equitable community distribution of critical resources and testing infrastructure. Methods The SAFER model incorporates a four-quadrant design to categorize a given community based on two scales: testing rate and positivity rate. Three models for stratifying testing rates and positivity rates were applied to census tracts in Milwaukee County, Wisconsin: using median values (MVs), cluster-based classification and goal-oriented values (GVs). Results Each of the three approaches had its strengths. MV stratification divided the categories most evenly across geography, aiding in assessing resource distribution in a fixed resource and testing capacity environment. The cluster-based stratification resulted in a less broad distribution but likely provides a truer distribution of communities. The GVs grouping displayed the least variation across communities, yet best highlighted our areas of need. Conclusions The SAFER model allowed the distribution of census tracts into categories to aid in informing resource and testing allocation. The MV stratification was found to be of most utility in our community for near real time resource allocation based on even distribution of census tracts. The GVs approach was found to better demonstrate areas of need.


2017 ◽  
Vol 8 (4) ◽  
pp. 2022-2031 ◽  
Author(s):  
Wan Nur Suryani Firuz Wan Ariffin ◽  
Xinruo Zhang ◽  
Mohammad Reza Nakhai

2021 ◽  
Author(s):  
Dawsen Hwang ◽  
Patrick Jaillet ◽  
Vahideh Manshadi

Real-Time Resource Allocation: Beyond Stochastic Demand Modeling


Sign in / Sign up

Export Citation Format

Share Document