scholarly journals Noise Eliminated Ensemble Empirical Mode Decomposition Scalogram Analysis for Rotating Machinery Fault Diagnosis

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8114
Author(s):  
Atik Faysal ◽  
Wai Keng Ngui ◽  
Meng Hee Lim ◽  
Mohd Salman Leong

Rotating machinery is one of the major components of industries that suffer from various faults due to the constant workload. Therefore, a fast and reliable fault diagnosis method is essential for machine condition monitoring. In this study, noise eliminated ensemble empirical mode decomposition (NEEEMD) was used for fault feature extraction. A convolution neural network (CNN) classifier was applied for classification because of its feature learning ability. A generalized CNN architecture was proposed to reduce the model training time. A sample size of 64×64×3 pixels RGB scalograms are used as the classifier input. However, CNN requires a large number of training data to achieve high accuracy and robustness. Deep convolution generative adversarial network (DCGAN) was applied for data augmentation during the training phase. To evaluate the effectiveness of the proposed feature extraction method, scalograms from related feature extraction methods such as ensemble empirical mode decomposition (EEMD), complementary EEMD (CEEMD), and continuous wavelet transform (CWT) are classified. The effectiveness of scalograms is also validated by comparing the classifier performance using grayscale samples from the raw vibration signals. All the outputs from bearing and blade fault classifiers showed that scalogram samples from the proposed NEEEMD method obtained the highest accuracy, sensitivity, and robustness using CNN. DCGAN was applied with the proposed NEEEMD scalograms to further increase the CNN classifier’s performance and identify the optimal number of training data. After training the classifier using augmented samples, the results showed that the classifier obtained even higher validation and test accuracy with greater robustness. The proposed method can be used as a more generalized and robust method for rotating machinery fault diagnosis.

2019 ◽  
Vol 255 ◽  
pp. 06009
Author(s):  
C. Y. Tan ◽  
W. K. Ngui ◽  
M. S. Leong ◽  
M. H. Lim

Blade fault diagnosis had become more significant and impactful for rotating machinery operators in the industry. Many works had been carried out using different signal processing techniques and artificial intelligence approaches for blade fault diagnosis. Frequency and wavelet based features are usually used as the input to the artificial neural network for blade fault diagnosis. However, the application of others time-frequency based feature extraction technique and artificial intelligence approach for blade fault diagnosis is still lacking. In this study, a novel blade fault diagnosis method based on ensemble empirical mode decomposition and extreme learning machine was developed. Bandpass filtering was applied to the raw vibration signals and integrated with the high pass filter to obtain the velocity signal. Synchronous time averaging was then applied to the velocity signals. Three ensemble empirical mode decomposition based feature extraction methods were proposed: direct statistical parameters extraction, intrinsic mode functions averaging statistical parameters extraction and features averaging statistical parameters extraction. The effectiveness of different feature vector sets for blade fault diagnosis was examined. Feature vector set of intrinsic mode functions averaging statistical parameters extraction was found to be more effective for blade fault diagnosis. With the novel proposed method, blade fault diagnosis could be more accurate and precise.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Peiming Shi ◽  
Cuijiao Su ◽  
Dongying Han

An adaptive stochastic resonance and analytical mode decomposition-ensemble empirical mode decomposition (AMD-EEMD) method is proposed for fault diagnosis of rotating machinery in this paper. Firstly, the stochastic resonance system is optimized by particle swarm optimization (PSO), and the best structure parameters are obtained. Then, the signal with noise is put into the stochastic resonance system and denoising and enhancing the signal. Secondly, the signal output from the stochastic resonance system is extracted by analytical mode decomposition (AMD) method. Finally, the signal is decomposed by ensemble empirical mode decomposition (EEMD) method. The simulation results show that the optimal stochastic resonance system can effectively improve the signal-to-noise ratio, and the number of effective components of EEMD decomposition is significantly reduced after using AMD, thus improving the decomposition results of EEMD and enhancing the amplitude of components frequency. Through the extraction of the rolling bearing fault signal feature proved that the method has a good effect.


Sign in / Sign up

Export Citation Format

Share Document