Early fault diagnosis of rotating machinery based on wavelet packets—Empirical mode decomposition feature extraction and neural network

2012 ◽  
Vol 27 ◽  
pp. 696-711 ◽  
Author(s):  
G.F. Bin ◽  
J.J. Gao ◽  
X.J. Li ◽  
B.S. Dhillon
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yuan Xie ◽  
Tao Zhang

The analysis of vibration signals has been a very important technique for fault diagnosis and health management of rotating machinery. Classic fault diagnosis methods are mainly based on traditional signal features such as mean value, standard derivation, and kurtosis. Signals still contain abundant information which we did not fully take advantage of. In this paper, a new approach is proposed for rotating machinery fault diagnosis with feature extraction algorithm based on empirical mode decomposition (EMD) and convolutional neural network (CNN) techniques. The fundamental purpose of our newly proposed approach is to extract distinguishing features. Frequency spectrum of the signal obtained through fast Fourier transform process is trained in a designed CNN structure to extract compressed features with spatial information. To solve the nonstationary characteristic, we also apply EMD technique to the original vibration signals. EMD energy entropy is calculated using the first few intrinsic mode functions (IMFs) which contain more energy. With features extracted from both methods combined, classification models are trained for diagnosis. We carried out experiments with vibration data of 52 different categories under different machine conditions to test the validity of the approach, and the results indicate it is more accurate and reliable than previous approaches.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8114
Author(s):  
Atik Faysal ◽  
Wai Keng Ngui ◽  
Meng Hee Lim ◽  
Mohd Salman Leong

Rotating machinery is one of the major components of industries that suffer from various faults due to the constant workload. Therefore, a fast and reliable fault diagnosis method is essential for machine condition monitoring. In this study, noise eliminated ensemble empirical mode decomposition (NEEEMD) was used for fault feature extraction. A convolution neural network (CNN) classifier was applied for classification because of its feature learning ability. A generalized CNN architecture was proposed to reduce the model training time. A sample size of 64×64×3 pixels RGB scalograms are used as the classifier input. However, CNN requires a large number of training data to achieve high accuracy and robustness. Deep convolution generative adversarial network (DCGAN) was applied for data augmentation during the training phase. To evaluate the effectiveness of the proposed feature extraction method, scalograms from related feature extraction methods such as ensemble empirical mode decomposition (EEMD), complementary EEMD (CEEMD), and continuous wavelet transform (CWT) are classified. The effectiveness of scalograms is also validated by comparing the classifier performance using grayscale samples from the raw vibration signals. All the outputs from bearing and blade fault classifiers showed that scalogram samples from the proposed NEEEMD method obtained the highest accuracy, sensitivity, and robustness using CNN. DCGAN was applied with the proposed NEEEMD scalograms to further increase the CNN classifier’s performance and identify the optimal number of training data. After training the classifier using augmented samples, the results showed that the classifier obtained even higher validation and test accuracy with greater robustness. The proposed method can be used as a more generalized and robust method for rotating machinery fault diagnosis.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 919
Author(s):  
Wanlu Jiang ◽  
Chenyang Wang ◽  
Jiayun Zou ◽  
Shuqing Zhang

The field of mechanical fault diagnosis has entered the era of “big data”. However, existing diagnostic algorithms, relying on artificial feature extraction and expert knowledge are of poor extraction ability and lack self-adaptability in the mass data. In the fault diagnosis of rotating machinery, due to the accidental occurrence of equipment faults, the proportion of fault samples is small, the samples are imbalanced, and available data are scarce, which leads to the low accuracy rate of the intelligent diagnosis model trained to identify the equipment state. To solve the above problems, an end-to-end diagnosis model is first proposed, which is an intelligent fault diagnosis method based on one-dimensional convolutional neural network (1D-CNN). That is to say, the original vibration signal is directly input into the model for identification. After that, through combining the convolutional neural network with the generative adversarial networks, a data expansion method based on the one-dimensional deep convolutional generative adversarial networks (1D-DCGAN) is constructed to generate small sample size fault samples and construct the balanced data set. Meanwhile, in order to solve the problem that the network is difficult to optimize, gradient penalty and Wasserstein distance are introduced. Through the test of bearing database and hydraulic pump, it shows that the one-dimensional convolution operation has strong feature extraction ability for vibration signals. The proposed method is very accurate for fault diagnosis of the two kinds of equipment, and high-quality expansion of the original data can be achieved.


Sign in / Sign up

Export Citation Format

Share Document