scholarly journals Dynamic Space Allocation Based on Internal Demand for Optimizing Release of Shared Parking

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 235
Author(s):  
Shuo-Yan Chou ◽  
Anindhita Dewabharata ◽  
Ferani Eva Zulvia

The size of cities has been continuously increasing because of urbanization. The number of public and private transportation vehicles is rapidly increasing, thus resulting in traffic congestion, traffic accidents, and environmental pollution. Although major cities have undergone considerable development in terms of transportation infrastructure, problems caused by a high number of moving vehicles cannot be completely resolved through the expansion of streets and facilities. This paper proposes a solution for the parking problem in cities that entails a shared parking system. The primary concept of the proposed shared parking system is to release parking lots that are open to specific groups for public usage without overriding personal usage. Open-to-specific-groups parking lots consist of parking spaces provided for particular people, such as parking buildings at universities for teachers, staff, and students. The proposed shared parking system comprises four primary steps: collecting and preprocessing data by using an Internet of Things system, predicting internal demand by using a recurrent neural network algorithm, releasing several unoccupied parking lots based on prediction results, and continuously updating the real-time data to improve future internal usage prediction. Data collection and data forecasting are performed to ensure that the system does not override personal usage. This study applied several forecasting algorithms, including seasonal ARIMA, support vector regression, multilayer perceptron, convolutional neural network, long short-term memory recurrent neural network with a many-to-one structure, and long short-term memory recurrent neural network with a many-to-many structure. The proposed system was evaluated using artificial and real datasets. Results show that the recurrent neural network with the many-to-many structure generates the most accurate prediction. Furthermore, the proposed shared parking system was evaluated for some scenarios in which different numbers of parking spaces were released. Simulation results show that the proposed shared parking system can provide parking spaces for public usage without overriding personal usage. Moreover, this system can generate new income for parking management and/or parking lot owners.

Author(s):  
Ralph Sherwin A. Corpuz ◽  

Analyzing natural language-based Customer Satisfaction (CS) is a tedious process. This issue is practically true if one is to manually categorize large datasets. Fortunately, the advent of supervised machine learning techniques has paved the way toward the design of efficient categorization systems used for CS. This paper presents the feasibility of designing a text categorization model using two popular and robust algorithms – the Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) Neural Network, in order to automatically categorize complaints, suggestions, feedbacks, and commendations. The study found that, in terms of training accuracy, SVM has best rating of 98.63% while LSTM has best rating of 99.32%. Such results mean that both SVM and LSTM algorithms are at par with each other in terms of training accuracy, but SVM is significantly faster than LSTM by approximately 35.47s. The training performance results of both algorithms are attributed on the limitations of the dataset size, high-dimensionality of both English and Tagalog languages, and applicability of the feature engineering techniques used. Interestingly, based on the results of actual implementation, both algorithms are found to be 100% effective in accurately predicting the correct CS categories. Hence, the extent of preference between the two algorithms boils down on the available dataset and the skill in optimizing these algorithms through feature engineering techniques and in implementing them toward actual text categorization applications.


2020 ◽  
Vol 142 ◽  
pp. 126-137 ◽  
Author(s):  
Augustine Osarogiagbon ◽  
Somadina Muojeke ◽  
Ramachandran Venkatesan ◽  
Faisal Khan ◽  
Paul Gillard

Sign in / Sign up

Export Citation Format

Share Document