Categorizing Natural Language-Based Customer Satisfaction: An Implementation Method Using Support Vector Machine and Long Short-Term Memory Neural Network

Author(s):  
Ralph Sherwin A. Corpuz ◽  

Analyzing natural language-based Customer Satisfaction (CS) is a tedious process. This issue is practically true if one is to manually categorize large datasets. Fortunately, the advent of supervised machine learning techniques has paved the way toward the design of efficient categorization systems used for CS. This paper presents the feasibility of designing a text categorization model using two popular and robust algorithms – the Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) Neural Network, in order to automatically categorize complaints, suggestions, feedbacks, and commendations. The study found that, in terms of training accuracy, SVM has best rating of 98.63% while LSTM has best rating of 99.32%. Such results mean that both SVM and LSTM algorithms are at par with each other in terms of training accuracy, but SVM is significantly faster than LSTM by approximately 35.47s. The training performance results of both algorithms are attributed on the limitations of the dataset size, high-dimensionality of both English and Tagalog languages, and applicability of the feature engineering techniques used. Interestingly, based on the results of actual implementation, both algorithms are found to be 100% effective in accurately predicting the correct CS categories. Hence, the extent of preference between the two algorithms boils down on the available dataset and the skill in optimizing these algorithms through feature engineering techniques and in implementing them toward actual text categorization applications.

Author(s):  
Iin Kurniasari ◽  
Kusrini Kusrini ◽  
Hanif Al Fatta

Perkembangan teknologi dewasa ini mendorong masyarakat untuk selalu tanggap teknologi, terlebih di era pandemi covid-19 yang selalu mengedepankan social distancing. Media sosial digunakan sebagai suatu alat untuk menyampaikan opini masyarakat kepada khalayak. Dalam penelitian ini, penulis melakukan penelitian tentang opini masyaraat pada media sosial instagram dengan mengguakan Support Vector Machine. Setelah dilakukan uji akurasi dan presisi ternyata SVM belum sesuai digunakan sebagai algoritma yang dapat menangkap urutan karena susunan kata yang dibolak-balik meskipun maknanya berbeda tetap bermakna sama oleh mesin SVM, hal ini dibuktikan juga dengan jumlah akurasi yang kecil.yaitu 59%. Sehingga diperlukan langkah untuk bisa diteliti dengan algoritma lain misalnya algoritma HRRN (Highest Response Ratio Next) atau LSTM (Long Short-Term Memory) yang memperhatikan urutan dan proses dengan rasio respon paling tinggi. Jika berdasarkan pendekatan ekstraksi fitur SVM dengan pendekatan count vector, tf-idf word level, tf-idf ngram level dan tf-idf char level. Dalam skenario ini nilai akurasi tertinggi terdapat pada perhitungan dengan menggunakan ekstraksi fitur count vector dan tf-idf ngram level.


Author(s):  
M. Rußwurm ◽  
M. Körner

<i>Land cover classification (LCC)</i> is a central and wide field of research in earth observation and has already put forth a variety of classification techniques. Many approaches are based on classification techniques considering observation at certain points in time. However, some land cover classes, such as crops, change their spectral characteristics due to environmental influences and can thus not be monitored effectively with classical mono-temporal approaches. Nevertheless, these temporal observations should be utilized to benefit the classification process. After extensive research has been conducted on modeling temporal dynamics by spectro-temporal profiles using vegetation indices, we propose a deep learning approach to utilize these temporal characteristics for classification tasks. In this work, we show how <i>long short-term memory</i> (LSTM) neural networks can be employed for crop identification purposes with SENTINEL 2A observations from large study areas and label information provided by local authorities. We compare these temporal neural network models, <i>i.e.</i>, LSTM and <i>recurrent neural network</i> (RNN), with a classical non-temporal <i>convolutional neural network</i> (CNN) model and an additional <i>support vector machine</i> (SVM) baseline. With our rather straightforward LSTM variant, we exceeded state-of-the-art classification performance, thus opening promising potential for further research.


2020 ◽  
Vol 9 (4) ◽  
pp. 365-374
Author(s):  
Sri Suning Kusumawardani ◽  
Syukron Abu Ishaq Alfarozi

Pada saat ini, penyelenggaraan sistem pembelajaran daring menjadi hal yang penting di tengah pandemi untuk menekan persebaran virus COVID-19. Namun, sistem ini sangat sulit menjaga motivasi dan tingkat keterlibatan mahasiswa karena tidak ada interaksi langsung antara pengajar dengan mahasiswa. Makalah ini meninjau penggunaan data log mahasiswa untuk kebutuhan analisis pembelajaran guna memprediksi kinerja atau kecenderungan drop-out mahasiswa dari suatu mata kuliah dengan melihat pada data log interaksi mahasiswa dengan sistem dan data demografis mahasiswa menggunakan suatu data terbuka, yaitu Open University Learning Analytics Dataset (OULAD). Dari tinjauan beberapa artikel penelitian yang merujuk pada dataset tersebut, ada beberapa hal yang perlu ditinjau: 1) permasalahan yang sering diangkat, yaitu prediksi kecenderungan gagal dari mata kuliah tertentu, prediksi kinerja, dan prediksi keterlibatan mahasiswa; 2) fitur yang digunakan pada saat pemodelan, yaitu fitur demografis dan interaksi, baik yang diringkas secara harian atau mingguan dengan berbagai representasi fitur; 3) metode analisis pembelajaran yang secara khusus menggunakan metode pembelajaran mesin yang sering digunakan, yaitu Decision Tree (DT), Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), dan Long Short-Term Memory (LSTM). Makalah ini juga mendiskusikan proses mitigasi dari mahasiswa yang berisiko, perancangan sistem data yang mendukung analisis pembelajaran, dan permasalahan yang sering ditemui pada saat proses pemodelan.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Ogasawara ◽  
Satoru Ikenoue ◽  
Hiroko Yamamoto ◽  
Motoshige Sato ◽  
Yoshifumi Kasuga ◽  
...  

AbstractCardiotocography records fetal heart rates and their temporal relationship to uterine contractions. To identify high risk fetuses, obstetricians inspect cardiotocograms (CTGs) by eye. Therefore, CTG traces are often interpreted differently among obstetricians, resulting in inappropriate interventions. However, few studies have focused on quantitative and nonbiased algorithms for CTG evaluation. In this study, we propose a newly constructed deep neural network model (CTG-net) to detect compromised fetal status. CTG-net consists of three convolutional layers that extract temporal patterns and interrelationships between fetal heart rate and uterine contraction signals. We aimed to classify the abnormal group (umbilical artery pH < 7.20 or Apgar score at 1 min < 7) and the normal group from CTG data. We evaluated the performance of the CTG-net with the F1 score and compared it with conventional algorithms, namely, support vector machine and k-means clustering, and another deep neural network model, long short-term memory. CTG-net showed the area under the receiver operating characteristic curve of 0.73 ± 0.04, which was significantly higher than that of long short-term memory. CTG-net, a quantitative and automated diagnostic aid system, enables early intervention for putatively abnormal fetuses, resulting in a reduction in the number of cases of hypoxic injury.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 235
Author(s):  
Shuo-Yan Chou ◽  
Anindhita Dewabharata ◽  
Ferani Eva Zulvia

The size of cities has been continuously increasing because of urbanization. The number of public and private transportation vehicles is rapidly increasing, thus resulting in traffic congestion, traffic accidents, and environmental pollution. Although major cities have undergone considerable development in terms of transportation infrastructure, problems caused by a high number of moving vehicles cannot be completely resolved through the expansion of streets and facilities. This paper proposes a solution for the parking problem in cities that entails a shared parking system. The primary concept of the proposed shared parking system is to release parking lots that are open to specific groups for public usage without overriding personal usage. Open-to-specific-groups parking lots consist of parking spaces provided for particular people, such as parking buildings at universities for teachers, staff, and students. The proposed shared parking system comprises four primary steps: collecting and preprocessing data by using an Internet of Things system, predicting internal demand by using a recurrent neural network algorithm, releasing several unoccupied parking lots based on prediction results, and continuously updating the real-time data to improve future internal usage prediction. Data collection and data forecasting are performed to ensure that the system does not override personal usage. This study applied several forecasting algorithms, including seasonal ARIMA, support vector regression, multilayer perceptron, convolutional neural network, long short-term memory recurrent neural network with a many-to-one structure, and long short-term memory recurrent neural network with a many-to-many structure. The proposed system was evaluated using artificial and real datasets. Results show that the recurrent neural network with the many-to-many structure generates the most accurate prediction. Furthermore, the proposed shared parking system was evaluated for some scenarios in which different numbers of parking spaces were released. Simulation results show that the proposed shared parking system can provide parking spaces for public usage without overriding personal usage. Moreover, this system can generate new income for parking management and/or parking lot owners.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Xiaolu Wei ◽  
Binbin Lei ◽  
Hongbing Ouyang ◽  
Qiufeng Wu

This study attempts to predict stock index prices using multivariate time series analysis. The study’s motivation is based on the notion that datasets of stock index prices involve weak periodic patterns, long-term and short-term information, for which traditional approaches and current neural networks such as Autoregressive models and Support Vector Machine (SVM) may fail. This study applied Temporal Pattern Attention and Long-Short-Term Memory (TPA-LSTM) for prediction to overcome the issue. The results show that stock index prices prediction through the TPA-LSTM algorithm could achieve better prediction performance over traditional deep neural networks, such as recurrent neural network (RNN), convolutional neural network (CNN), and long and short-term time series network (LSTNet).


Sign in / Sign up

Export Citation Format

Share Document