scholarly journals Evaluation of the Influence of Individual Clay Minerals on Biochar Carbon Mineralization in Soils

Soil Systems ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 79
Author(s):  
Qingzhong Zhang ◽  
Claudia Keitel ◽  
Balwant Singh

Although association between mineral and biochar carbon have been speculated in some studies, still there is no direct evidence for the influence of individual clay minerals on the mineralization of biochar carbon in soils. To address this, we conducted an incubation study using monomineralic soils constituted by separately mixing pure minerals, i.e., smectite, kaolinite, and goethite, with a sandy soil. Switch grass biochar (400 °C) was added to the artificial soils and samples were incubated for 90 days at 20 °C in the laboratory. The CO2-C mineralized from the control, and biochar amended soil was captured in NaOH traps and the proportion of C mineralized from biochar was determined using δ13C isotopic analysis. The clay minerals significantly decreased the cumulative total carbon mineralized during the incubation period, whereas biochar had no effect on this. The least amount of total C was mineralized in the presence of goethite and biochar amended soil, where only 0.6% of the native soil organic carbon (SOC) (compared to 4.14% in control) and 2.9% of the biochar-C was mineralized during the 90 days incubation period. Native SOC mineralization was significantly reduced in the presence of biochar and the three minerals. Goethite was most effective in stabilizing both biochar and the native soil organic carbon. The short-term data from this study demonstrate that biochar application in Fe oxide rich soils may be an effective strategy to sequester biochar carbon, as well as to stabilize native soil carbon.

2015 ◽  
Vol 66 (4) ◽  
pp. 714-721 ◽  
Author(s):  
T. F. Rittl ◽  
E. H. Novotny ◽  
F. C. Balieiro ◽  
E. Hoffland ◽  
B. J. R. Alves ◽  
...  

2017 ◽  
Vol 39 (2) ◽  
pp. 169 ◽  
Author(s):  
Heyun Wang ◽  
Zhi Dong ◽  
Jianying Guo ◽  
Hongli Li ◽  
Jinrong Li ◽  
...  

Grassland ecosystems, an important component of the terrestrial environment, play an essential role in the global carbon cycle and balance. We considered four different grazing intensities on a Stipa breviflora desert steppe: heavy grazing (HG), moderate grazing (MG), light grazing (LG), and an area fenced to exclude livestock grazing as the Control (CK). The analyses of the aboveground biomass, litter, belowground biomass, soil organic carbon and soil light fraction organic carbon were utilised to study the organic carbon stock characteristics in the S. breviflora desert steppe under different grazing intensities. This is important to reveal the mechanisms of grazing impact on carbon processes in the desert steppe, and can provide a theoretical basis for conservation and utilisation of grassland resources. Results showed that the carbon stock was 11.98–44.51 g m–2 in aboveground biomass, 10.43–36.12 g m–2 in plant litters, and 502.30–804.31 g m–2 in belowground biomass (0–40 cm). It was significantly higher in CK than in MG and HG. The carbon stock at 0–40-cm soil depth was 7817.43–9694.16 g m–2, and it was significantly higher in LG than in CK and HG. The total carbon stock in the vegetation-soil system was 8342.14–10494.80 g m–2 under different grazing intensities, with the largest value in LG, followed by MG, CK, and HG. About 90.54–93.71% of the total carbon in grassland ecosystem was reserved in soil. The LG and MG intensities were beneficial to the accumulation of soil organic carbon stock. The soil light fraction organic carbon stock was 484.20–654.62 g m–2 and was the highest under LG intensity. The LG and MG intensities were beneficial for soil nutrient accumulation in the desert steppe.


2014 ◽  
Vol 11 (18) ◽  
pp. 5235-5244 ◽  
Author(s):  
A. Chappell ◽  
N. P. Webb ◽  
R. A. Viscarra Rossel ◽  
E. Bui

Abstract. The debate remains unresolved about soil erosion substantially offsetting fossil fuel emissions and acting as an important source or sink of CO2. There is little historical land use and management context to this debate, which is central to Australia's recent past of European settlement, agricultural expansion and agriculturally-induced soil erosion. We use "catchment" scale (∼25 km2) estimates of 137Cs-derived net (1950s–1990) soil redistribution of all processes (wind, water and tillage) to calculate the net soil organic carbon (SOC) redistribution across Australia. We approximate the selective removal of SOC at net eroding locations and SOC enrichment of transported sediment and net depositional locations. We map net (1950s–1990) SOC redistribution across Australia and estimate erosion by all processes to be ∼4 Tg SOC yr−1, which represents a loss of ∼2% of the total carbon stock (0–10 cm) of Australia. Assuming this net SOC loss is mineralised, the flux (∼15 Tg CO2-equivalents yr−1) represents an omitted 12% of CO2-equivalent emissions from all carbon pools in Australia. Although a small source of uncertainty in the Australian carbon budget, the mass flux interacts with energy and water fluxes, and its omission from land surface models likely creates more uncertainty than has been previously recognised.


2018 ◽  
Author(s):  
Marwa Tifafi ◽  
Marta Camino-Serrano ◽  
Christine Hatté ◽  
Hector Morras ◽  
Lucas Moretti ◽  
...  

Abstract. Despite the importance of soil as a large component of the terrestrial ecosystems, the soil compartments are not well represented in the Land Surface Models (LSMs). Indeed, soils in current LSMs are generally represented based on a very simplified schema that can induce a misrepresentation of the deep dynamics of soil carbon. Here, we present a new version of the IPSL-Land Surface Model called ORCHIDEE-SOM, incorporating the 14C dynamic in the soil. ORCHIDEE-SOM, first, simulates soil carbon dynamics for different layers, down to 2 m depth. Second, concentration of dissolved organic carbon (DOC) and its transport are modeled. Finally, soil organic carbon (SOC) decomposition is considered taking into account the priming effect. After implementing the 14C in the soil module of the model, we evaluated model outputs against observations of soil organic carbon and 14C activity (F14C) for different sites with different characteristics. The model managed to reproduce the soil organic carbon stocks and the F14C along the vertical profiles. However, an overestimation of the total carbon stock was noted, but was mostly marked on the surface. Then, thanks to the introduction of 14C, it has been possible to highlight an underestimation of the age of carbon in the soil. Thereafter, two different tests on this new version have been established. The first was to increase carbon residence time of the passive pool and decrease the flux from the slow pool to the passive pool. The second was to establish an equation of diffusion, initially constant throughout the profile, making it vary exponentially as a function of depth. The first modifications did not improve the capacity of the model to reproduce observations whereas the second test showed a decrease of the soil carbon stock overestimation, especially at the surface and an improvement of the estimates of the carbon age. This assumes that we should focus more on vertical variation of soil parameters as a function of depth, mainly for diffusion, in order to upgrade the representation of global carbon cycle in LSMs, thereby helping to improve predictions of the future response of soil organic carbon to global warming.


Author(s):  
K.K. Vikrant ◽  
D.S. Chauhan ◽  
R.H. Rizvi

Climate change is one of the impending problems that have affected the productivity of agroecosystems which calls for urgent action. Carbon sequestration through agroforestry along altitude in mountainous regions is one of the options to contribute to global climate change mitigation. Three altitudes viz. lower (286-1200m), middle (1200-2000m), and upper (2000-2800m) have been selected in Tehri district. Ten Quadrates (10m × 10 m) were randomly selected from each altitude in agrisilviculture system. At every sampling point, one composite soil sample was taken at 30 cm soil depth for soil organic carbon analysis. For the purpose of woody biomass, Non destructive method and for crop biomass assessment destructive method was employed. Finally, aboveground biomass (AGB), belowground biomass carbon (BGB), Total tree Biomass (TTB), Crop biomass (CB), Total Biomass (TB), Total biomass carbon (TBC), soil organic carbon (SOC), and total carbon stock (TC) status were estimated and variables were compared using one-way analysis of variance (ANOVA).The result indicated that AGB, BGB, TTB, CB , TB, TBC, SOC, and TC varied significantly (p < 0.05) across the altitudes. Results showed that total carbon stock followed the order upper altitude ˃ middle altitudes ˃ lower altitude. The upper altitude (2000-2800 m) AGB, BGB,TTB, TBC,SOC, and TC stock was estimated as 2.11 Mg ha-1 , 0.52 Mg ha-1, 2.63 Mg ha-1, 2.633 Mg ha-1, 1.18 Mg ha-1 , 26.53 Mg ha-1, 38.48 Mg ha-1 respectively, and significantly higher than the other altitudes. It was concluded that agrisilviculture system hold a high potential for carbon storage at temperate zones. Quercus lucotrichophora, Grewia oppositifolia and Melia azadirach contributed maximum carbon storage which may greatly contribute to the climate resilient green economy strategy and their conservation should be promoted.


2014 ◽  
Vol 5 ◽  
pp. 63-67
Author(s):  
Tshering Dolma Lama ◽  
Ram Asheshwar Mandal

A study was carried on ten leasehold forests of Katakuti VDC, Dolakha district to estimate the carbon stock. Random sampling was used to collect the biophysical data of trees/ poles, sapling, root and leaf litter, herb and grass. Then, the biomass was calculated using the respective equation and the calculated biomass stock was converted into carbon stock multiplying with 0.47. Similarly, the soil samples were collectewd from different depths of 0-10 cm, 10-20 cm and 20-30 cm to determine the soil organic carbon. Lastly, all analyzed data were compiled to get total carbon stocks. The result showed that the estimated total carbon stock per ha was found to be highest in Srijana leasehold forest with 125.493 t C/ha. The estimated total carbon stock of 10 leasehold forest was found to be 1439.033 tons. Here, Leasehold forests have been an emerging and successful example in conserving forests in epal. So, it is recommended to extend such studies in other parts of Nepal. DOI: http://dx.doi.org/10.3126/init.v5i0.10255   The Initiation 2013 Vol.5; 63-67


Sign in / Sign up

Export Citation Format

Share Document