scholarly journals Optimizing Daily Service Scheduling for Medical Diagnostic Equipment Considering Patient Satisfaction and Hospital Revenue

2018 ◽  
Vol 10 (9) ◽  
pp. 3349
Author(s):  
Gang Du ◽  
Xinyue Li ◽  
Hui Hu ◽  
Xiaoling Ouyang

Under the background of the unbalanced supply and demand of medical diagnostic equipment and rising health care costs, this study aims to optimize the service scheduling for medical diagnostic equipment so as to improve patient satisfaction by ensuring the equipment utilization rate and hospital revenue. The finite horizon Markov Decision Process (MDP) was adopted to solve this problem. On the basis of field research, we divided patients into four categories: emergency patients, inpatients, appointed outpatients, and the randomly arrived outpatients according to the severity of illness and appointment situations. In the construction of the MDP model, we considered the possibility of cancellation (no-show patients) in scheduling optimization. Combined with the benefits and costs related to patient satisfaction, based on the value iteration algorithm, we took patient satisfaction and hospital revenue as the objective functions. Results indicated that, compared with the current scheduling strategy, the integrated strategy proposed in this study has a better performance, which could maintain the sustainable usage rate of large medical resources and patient satisfaction.

Author(s):  
Damien Ernst ◽  
Mevludin Glavic ◽  
Pierre Geurts ◽  
Louis Wehenkel

In this paper we explain how to design intelligent agents able to process the information acquired from interaction with a system to learn a good control policy and show how the methodology can be applied to control some devices aimed to damp electrical power oscillations. The control problem is formalized as a discrete-time optimal control problem and the information acquired from interaction with the system is a set of samples, where each sample is composed of four elements: a state, the action taken while being in this state, the instantaneous reward observed and the successor state of the system. To process this information we consider reinforcement learning algorithms that determine an approximation of the so-called Q-function by mimicking the behavior of the value iteration algorithm. Simulations are first carried on a benchmark power system modeled with two state variables. Then we present a more complex case study on a four-machine power system where the reinforcement learning algorithm controls a Thyristor Controlled Series Capacitor (TCSC) aimed to damp power system oscillations.


2014 ◽  
Vol 513-517 ◽  
pp. 1092-1095
Author(s):  
Bo Wu ◽  
Yan Peng Feng ◽  
Hong Yan Zheng

Bayesian reinforcement learning has turned out to be an effective solution to the optimal tradeoff between exploration and exploitation. However, in practical applications, the learning parameters with exponential growth are the main impediment for online planning and learning. To overcome this problem, we bring factored representations, model-based learning, and Bayesian reinforcement learning together in a new approach. Firstly, we exploit a factored representation to describe the states to reduce the size of learning parameters, and adopt Bayesian inference method to learn the unknown structure and parameters simultaneously. Then, we use an online point-based value iteration algorithm to plan and learn. The experimental results show that the proposed approach is an effective way for improving the learning efficiency in large-scale state spaces.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Thai Duong ◽  
Duong Nguyen-Huu ◽  
Thinh Nguyen

Markov decision process (MDP) is a well-known framework for devising the optimal decision-making strategies under uncertainty. Typically, the decision maker assumes a stationary environment which is characterized by a time-invariant transition probability matrix. However, in many real-world scenarios, this assumption is not justified, thus the optimal strategy might not provide the expected performance. In this paper, we study the performance of the classic value iteration algorithm for solving an MDP problem under nonstationary environments. Specifically, the nonstationary environment is modeled as a sequence of time-variant transition probability matrices governed by an adiabatic evolution inspired from quantum mechanics. We characterize the performance of the value iteration algorithm subject to the rate of change of the underlying environment. The performance is measured in terms of the convergence rate to the optimal average reward. We show two examples of queuing systems that make use of our analysis framework.


2015 ◽  
Vol 13 (3) ◽  
pp. 47-57 ◽  
Author(s):  
Sanaa Chafik ◽  
Cherki Daoui

As many real applications need a large amount of states, the classical methods are intractable for solving large Markov Decision Processes. The decomposition technique basing on the topology of each state in the associated graph and the parallelization technique are very useful methods to cope with this problem. In this paper, the authors propose a Modified Value Iteration algorithm, adding the parallelism technique. They test their implementation on artificial data using an Open MP that offers a significant speed-up.


Sign in / Sign up

Export Citation Format

Share Document